Nonclassical Relaxation Oscillations in a Mathematical Predator-Prey Model

被引:0
|
作者
Glyzin, S. D. [1 ]
Kolesov, A. Yu [1 ]
Rozov, N. Kh [2 ]
机构
[1] Demidov Yaroslavl State Univ, Yaroslavl 150003, Russia
[2] Lomonosov Moscow State Univ, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S0012266120080029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the well-known Bazykin-Svirezhev model describing the predator-prey interaction. This model is a system of two nonlinear ordinary differential equations with a small parameter multiplying one of the derivatives. The existence and stability of a so-called relaxation cycle in such a system are studied. A peculiar feature of such a cycle is that as the small parameter tends to zero, its fast component changes in a delta-like manner, while the slow component tends to some discontinuous periodic function.
引用
收藏
页码:976 / 992
页数:17
相关论文
共 50 条
  • [1] Nonclassical Relaxation Oscillations in a Mathematical Predator–Prey Model
    S. D. Glyzin
    A. Yu. Kolesov
    N. Kh. Rozov
    Differential Equations, 2020, 56 : 976 - 992
  • [2] Relaxation oscillations in predator-prey model with distributed delay
    Wang, Na
    Han, Maoan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01): : 475 - 484
  • [3] Relaxation Oscillations in Predator-Prey Systems
    Ai, Shangbing
    Yi, Yingfei
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 36 (Suppl 1) : 77 - 104
  • [4] Relaxation oscillations in a class of predator-prey systems
    Liu, WS
    Xiao, DM
    Yi, YF
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 188 (01) : 306 - 331
  • [5] A CRITERION FOR THE EXISTENCE OF RELAXATION OSCILLATIONS WITH APPLICATIONS TO PREDATOR-PREY SYSTEMS AND AN EPIDEMIC MODEL
    Hsu, Ting-Hao
    Wolkowicz, Gail S. K.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (04): : 1257 - 1277
  • [6] A mathematical model for a spatial predator-prey interaction
    Palumbo, A
    Valenti, G
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (11) : 945 - 954
  • [7] Analysis of a mathematical predator-prey model with delay
    Dolgii, Yu. F.
    Nidchenko, S. N.
    DIFFERENTIAL EQUATIONS, 2008, 44 (06) : 861 - 865
  • [8] Analysis of a mathematical predator-prey model with delay
    Yu. F. Dolgii
    S. N. Nidchenko
    Differential Equations, 2008, 44 : 861 - 865
  • [9] Relaxation Oscillations in a System with Delays Modeling the Predator-Prey Problem
    Kaschenko, S. A.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2015, 49 (07) : 547 - 581
  • [10] Mathematical Model of Dengue Virus with Predator-Prey Interactions
    Siddik, Sarinah Banu Mohamed
    Abdullah, Farah Aini
    Ismail, Ahmad Izani Md
    SAINS MALAYSIANA, 2020, 49 (05): : 1191 - 1200