Relative entropy and discrete Poincare inequalities for reducible matrices

被引:3
作者
Banasiak, Jacek [1 ,2 ]
Namayanja, Proscovia [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] Tech Univ Lodz, Inst Math, PL-90924 Lodz, Poland
关键词
Perron-Frobenius theorem; Reducible matrices; Irreducible matrices; Relative entropy; Linear systems; Matrix exponential function;
D O I
10.1016/j.aml.2012.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general relative entropy functional has been used recently in Perthame (2007) [3] to provide a uniform treatment of various estimates of the decay of the exponential function (e(tA))(t >= 0), where A is a matrix with positive off-diagonal entries. In this note we show that the method can be extended to general irreducible matrices. For reducible matrices, on the other hand, we show that staying within the framework of Perthame (2007) [3] only allows for control of the evolution in certain invariant subspaces of A. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2193 / 2197
页数:5
相关论文
共 9 条
[1]  
[Anonymous], STRUCTURAL CHANGE EC
[2]  
[Anonymous], 2010, FUNCTIONAL ANAL
[3]  
[Anonymous], MODELE METO IN PRESS
[4]   Asynchronous Exponential Growth of a General Structured Population Model [J].
Banasiak, Jacek ;
Pichor, Katarzyna ;
Rudnicki, Ryszard .
ACTA APPLICANDAE MATHEMATICAE, 2012, 119 (01) :149-166
[5]  
Gantmacher F. R., 1959, The Theory of Matrices
[6]  
Laurençot P, 2009, COMMUN MATH SCI, V7, P503
[7]  
Perthame B., 2007, TRANSPORT EQUATIONS
[8]   Markov semigroups and stability of the cell maturity distribution [J].
Rudnicki, R ;
Pichór, K .
JOURNAL OF BIOLOGICAL SYSTEMS, 2000, 8 (01) :69-94
[9]  
Seneta E, 2006, SPRINGER SER STAT, P1, DOI 10.1007/0-387-32792-4