This study of La Gloria pluton in the Chilean Andes evaluates what information about magmatic conditions can be extracted from minerals in a granitic pluton, despite lower-temperature re-equilibration. The pluton is zoned vertically from granodiorite/quartz monzodiorite to quartz monzonite at the roof, with the uppermost 1500 m showing the strongest modal and compositional trends. This mimics the pattern frequently inferred from zoning in voluminous ignimbrites: a strongly zoned cap overlying a more homogeneous main body. The presence of large, euhedral amphibole +/- biotite at the chamber margins and roof indicate that water was concentrated there. Biotite and amphibole compositions indicate a roofward increase in magmatic f(HF), f(HCl) and F/Cl ratio, analogous to preeruptive volatile gradients recorded in zoned ignimbrites. Hornblende that crystallized directly from the melt in the volatile-rich wall and roof zones yields total-Al solidification pressures of similar to 1 kbar, consistent with the estimated 4000 m of cover at the time of emplacement. In the core of the pluton, actinolitic amphibole formed by reaction of melt with early-crystallized clinopyroxene. Plag-cpx cumulate clots in the lower level are interpreted as early crystallizing phases entrained in rising granitic magma. Cores of amphibole phenocrysts in mafic enclaves suggest initial crystallization at pressures of 2-3 kbar. Lower Ti and Al contents of rims and acicular groundmass amphibole, overlapping the composition of amphibole in the host granitoid, indicate that the enclaves equilibrated with the host at the present exposure level in the presence of interstitial melt. A roofward relative increase in f(O2) of the magma is recorded by an increasing proportion of Fe-Ti oxides as a fraction of the mafic phases, greater Mn content of ilmenite, and constant or higher Mg/(Mg+Fe) in hornblende and biotite despite declining whole-rock MgO contents. Association of subhedral biotite and magnetite with actinolitic amphibole in clots implies a reaction: K-Ti-hbf O-2(gas) = bi+mt+actinolitic amph+titanite. Magnetite coexisting with biotite with Fe/(Fe+Mg) = 0.34 - 0.40 implies temperatures of equilibration no lower than about 720-750 degrees C, i.e., late-magmatic rather than subsolidus. Saturation with respect to a water-rich vapor and subsequent diffusive loss of hydrogen may have caused this oxidation trend, which resulted in the most magnesian mafic phases occurring in the most compositionally evolved rocks, opposite to trends in most zoned ignimbrites, which presumably record conditions nearer the liquidus and prior to exsolution of a water-rich vapor. Two-feldspar and Fe-Ti-oxide geothermometers record subsolidus conditions in the pluton and yield higher temperatures for samples from the roof zone, suggesting that slower cooling at deeper levels allowed these minerals to continue to equilibrate to lower temperatures. Individual minerals span wide ranges in composition at any given level of the pluton, from those appropriate for phenocrysts, to those that record conditions well below the solidus. We suggest that the shallow level and isolated position of the pluton led to rapid escape of magmatic volatiles and rapid cooling, thereby preventing development of a long-lived hydrothermal system. Resulting small water/rock ratios may account for why late-magmatic and subsolidus re-equilibration were not pervasive.