Pragmatical adaptive chaos control from a new double van der Pol system to a new double Duffing system

被引:10
作者
Ge, Zheng-Ming [1 ]
Li, Shih-Chung [1 ]
Li, Shih-Yu [1 ]
Chang, Ching-Ming [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Mech Engn, Hsinchu 300, Taiwan
关键词
pragmatical adaptive control; double van der Pol system; double Duffing system; uncoupled chaotic system;
D O I
10.1016/j.amc.2008.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new pragmatical adaptive control method for different chaotic systems is proposed. Traditional chaos control is limited to decrease chaos of one chaotic system. This method enlarges the effective scope of chaos control. We can control a chaotic system, e.g. a new chaotic double van der Pol system, to a given chaotic or regular system, e.g. a new chaotic double Duffing system or to a damped simple harmonic system. By a pragmatical theorem of asymptotical stability based on an assumption of equal probability of initial point, an adaptive control law is derived such that it can be proved strictly that the common zero solution of error dynamics and of parameter dynamics is asymptotically stable. Numerical simulations are given to show the effectiveness of the proposed scheme. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:513 / 522
页数:10
相关论文
共 31 条
[1]  
BERNARDO M, 1996, PHYS LETT A, V214, P139
[2]   A nonlinear adaptive approach to controlling chaotic oscillators [J].
Cao, YJ .
PHYSICS LETTERS A, 2000, 270 (3-4) :171-176
[3]   Permanence of a discrete N-species cooperation system with time delays and feedback controls [J].
Chen, Fengde .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) :23-29
[4]  
Chen G., 1998, CHAOS ORDER METHODOL
[5]   On time-delayed feedback control of chaotic systems [J].
Chen, GR ;
Yu, XH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (06) :767-772
[6]   Global synchronization of chaotic systems via linear balanced feedback control [J].
Chen, Heng-Hui .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) :923-931
[7]   THE DYNAMICS OF TRANSIENT OSTWALD RIPENING [J].
CHEN, MK ;
VOORHEES, PW .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1993, 1 (05) :591-612
[8]   Adaptive synchronization of a hyperchaotic system with uncertain parameter [J].
Elabbasy, E. M. ;
Agiza, H. N. ;
El-Dessoky, M. M. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1133-1142
[9]   Robust control for a class of nonlinear oscillators with chaotic attractors [J].
Fuh, CC ;
Tung, PC .
PHYSICS LETTERS A, 1996, 218 (3-6) :240-248
[10]   Anticontrol of chaos of the fractional order modified van der Pol systems [J].
Ge, Zheng-Ming ;
Zhang, An-Ray .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) :1161-1172