Ligand & band gap engineering: tailoring the protocol synthesis for achieving high-quality CsPbI3quantum dots

被引:56
作者
Hassanabadi, Ehsan [1 ,2 ]
Latifi, Masoud [2 ]
Gualdron-Reyes, Andres. F. [1 ]
Masi, Sofia [1 ]
Yoon, Seog Joon [1 ,3 ]
Poyatos, Macarena [1 ]
Julian-Lopez, Beatriz [1 ]
Mora-Sero, Ivan [1 ]
机构
[1] Univ Jaume 1, Inst Adv Mat INAM, Ave Vicent Sos Baynat S-N, Castellon De La Plana 12071, Castellon, Spain
[2] Amirkabir Univ Technol, Text Excellence & Res Ctr, Text Engn Dept, Hafez Ave, Tehran 1591634311, Iran
[3] Yeungnam Univ, Coll Nat Sci, Dept Chem, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
基金
欧洲研究理事会;
关键词
LEAD HALIDE PEROVSKITES; QUANTUM DOTS; ENHANCED PHOTOLUMINESCENCE; ANION-EXCHANGE; CSPBX3; X; NANOCRYSTALS; BR; EFFICIENCY; SURFACE; SIZE;
D O I
10.1039/d0nr03180a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hot-injection has become the most widespread method used for the synthesis of perovskite quantum dots (QDs) with enormous interest for application in optoelectronic devices. However, there are some aspects of the chemistry involved in this synthesis that have not been completely investigated. In this work, we synthesized ultra-high stable CsPbI(3)QDs for more than 15 months by controlling two main parameters: synthesis temperature and the concentration of capping ligands. By increasing the capping ligand concentration during the QD synthesis, we were able to grow CsPbI(3)in a broad range of temperatures, improving the photophysical properties of QDs by increasing the synthesis temperature. We achieved the maximum photoluminescence quantum yield (PLQY) of 93% for a synthesis conducted at 185 degrees C, establishing an efficient surface passivation to decrease the density of non-radiative recombination sites. Under these optimized synthesis conditions, deep red LEDs with an External Quantum Efficiency (EQE) higher than 6% were achieved. The performance of these LEDs is higher than that of the reported CsPbI(3)QD-LEDs containing standard capping agents, without additional elements or further element exchange. We show that it is possible to produce stable CsPbI(3)QDs with high PLQY and red emission beyond the requirement of the Rec. 2020 standards for red color.
引用
收藏
页码:14194 / 14203
页数:10
相关论文
共 65 条
[1]   Role of Acid-Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals [J].
Almeida, Guilherme ;
Goldoni, Luca ;
Akkerman, Quinten ;
Dang, Zhiya ;
Khan, Ali Hossain ;
Marras, Sergio ;
Moreels, Iwan ;
Manna, Liberato .
ACS NANO, 2018, 12 (02) :1704-+
[2]   Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals [J].
Bodnarchuk, Maryna I. ;
Boehme, Simon C. ;
ten Brinck, Stephanie ;
Bernasconi, Caterina ;
Shynkarenko, Yevhen ;
Krieg, Franziska ;
Widmer, Roland ;
Aeschlimann, Beat ;
Guenther, Detlef ;
Kovalenko, Maksym V. ;
Infante, Ivan .
ACS ENERGY LETTERS, 2019, 4 (01) :63-74
[3]   Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals [J].
Cademartiri, L ;
Bertolotti, J ;
Sapienza, R ;
Wiersma, DS ;
von Freymann, G ;
Ozin, GA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (02) :671-673
[4]   Dialkylamide as Both Capping Agent and Surfactant in a Direct Solvothermal Synthesis of Magnetite and Titania Nanoparticles [J].
Cara, Claudio ;
Musinu, Anna ;
Mameli, Valentina ;
Ardu, Andrea ;
Niznansky, Daniel ;
Bursik, Josef ;
Scorciapino, Mariano A. ;
Manzo, Giorgia ;
Cannas, Carla .
CRYSTAL GROWTH & DESIGN, 2015, 15 (05) :2364-2372
[5]   Solvothermal Synthesis of High-Quality All-Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire [J].
Chen, Min ;
Zou, Yatao ;
Wu, Linzhong ;
Pan, Qi ;
Yang, Di ;
Hu, Huicheng ;
Tan, Yeshu ;
Zhong, Qixuan ;
Xu, Yong ;
Liu, Haiyu ;
Sun, Baoquan ;
Zhang, Qiao .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (23)
[6]   Surface Termination of CsPbBr3 Perovskite Quantum Dots Determined by Solid-State NMR Spectroscopy [J].
Chen, Yunhua ;
Smock, Sara R. ;
Flintgruber, Anne H. ;
Perras, Frederic A. ;
Brutchey, Richard L. ;
Rossini, Aaron J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (13) :6117-6127
[7]   Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J].
Chiba, Takayuki ;
Hayashi, Yukihiro ;
Ebe, Hinako ;
Hoshi, Keigo ;
Sato, Jun ;
Sato, Shugo ;
Pu, Yong-Jin ;
Ohisa, Satoru ;
Kido, Junji .
NATURE PHOTONICS, 2018, 12 (11) :681-+
[8]   Solution-processed, high-performance light-emitting diodes based on quantum dots [J].
Dai, Xingliang ;
Zhang, Zhenxing ;
Jin, Yizheng ;
Niu, Yuan ;
Cao, Hujia ;
Liang, Xiaoyong ;
Chen, Liwei ;
Wang, Jianpu ;
Peng, Xiaogang .
NATURE, 2014, 515 (7525) :96-99
[9]   Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals [J].
De Roo, Jonathan ;
Ibanez, Maria ;
Geiregat, Pieter ;
Nedelcu, Georgian ;
Walravens, Willem ;
Maes, Jorick ;
Martins, Jose C. ;
Van Driessche, Isabel ;
Koyalenko, Maksym V. ;
Hens, Zeger .
ACS NANO, 2016, 10 (02) :2071-2081
[10]   Narrow Linewidth Excitonic Emission in Organic-Inorganic Lead Iodide Perovskite Single Crystals [J].
Diab, Hiba ;
Trippe-Allard, Gaelle ;
Ledee, Ferdinand ;
Jemli, Khaoula ;
Vilar, Christele ;
Bouchez, Guillaume ;
Jacques, Vincent L. R. ;
Tejeda, Antonio ;
Even, Jacky ;
Lauret, Jean-Sebastien ;
Deleporte, Emmanuelle ;
Garrot, Damien .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (24) :5093-5100