Multiple-gradient descent algorithm (MGDA) for multiobjective optimization

被引:205
作者
Desideri, Jean-Antoine [1 ]
机构
[1] INRIA, Ctr Sophia Antipolis Mediterranee, F-06902 Sophia Antipolis, France
关键词
D O I
10.1016/j.crma.2012.03.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One considers the context of the concurrent optimization of several criteria J(i)(Y) (i = 1,..., n), supposed to be smooth functions of the design vector Y is an element of R-N (n <= N). An original constructive solution is given to the problem of identifying a descent direction common to all criteria when the current design-point Y-0 is not Pareto-optimal. This leads us to generalize the classical steepest-descent method to the multiobjective context by utilizing this direction for the descent. The algorithm is then proved to converge to a Pareto-stationary design-point. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:313 / 318
页数:6
相关论文
共 5 条
  • [1] [Anonymous], 1986, Practical Optimization
  • [2] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [3] Desideri J.-A., 2009, 6953 INRIA RES
  • [4] Miettinen K, 2012, NONLINEAR MULTIOBJEC, V12
  • [5] Zerbinati A., 2011, 7667 INRIA RES