Routine hematology parameters in COVID-19: A predictor of disease severity and mortality

被引:6
作者
Awale, Rupali B. [1 ]
Singh, Ashutosh [1 ]
Mishra, Prabhaker [2 ]
Bais, Prateek S. [3 ]
Vansh, Khare [3 ]
Shamim, Rafat [3 ]
Ghatak, Tanmoy [4 ]
Hashim, Zia [5 ]
Gupta, Devendra [6 ]
Nath, Alok [5 ]
Singh, Ratinder K. [4 ]
Singh, Chandrakanta [4 ]
Pande, Shantanu [7 ]
机构
[1] Sanjay Gandhi Inst Med Sci, Dept Lab Med, Lucknow, Uttar Pradesh, India
[2] Sanjay Gandhi Inst Med Sci, Dept Biostat & Hlth Informat, Lucknow, Uttar Pradesh, India
[3] Sanjay Gandhi Inst Med Sci, Dept Anaesthesiol, Lucknow, Uttar Pradesh, India
[4] Sanjay Gandhi Inst Med Sci, Dept Emergency Med, Lucknow, Uttar Pradesh, India
[5] Sanjay Gandhi Inst Med Sci, Dept Pulm Med, Lucknow, Uttar Pradesh, India
[6] Sanjay Gandhi Inst Med Sci, Dept Anesthesia, Lucknow, Uttar Pradesh, India
[7] Sanjay Gandhi Inst Med Sci, Dept Cardiovasc & Thorac Surg, Lucknow, Uttar Pradesh, India
关键词
Complete blood count; COVID-19; hematology; lymphocyte-monocyte ratio; mortality; neutrophil-lymphocyte ratio; severe disease; TO-LYMPHOCYTE RATIO; NEUTROPHIL;
D O I
10.4103/jfmpc.jfmpc_2453_21
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Our understanding of the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still evolving and is limited for prognostication. The study was performed to predict severity and mortality based on hematology parameters in coronavirus disease (COVID-19). Material and Methods: The study was a single-center retrospective analysis of 240 patients with COVID-19. The hematological parameters were compared between different grades of severity. The receiver operating characteristics (ROC) curve along with the Classification and Regression Trees (CART) methods were used for the analysis. Result: The total leukocyte count, absolute neutrophil count, neutrophil-lymphocyte ratio (NLR), and neutrophil-monocyte ratio (NMR) were increasing along with an increase in severity. while the absolute lymphocyte count and lymphocyte-monocyte ratio (LMR) were decreasing (P< 0.001). For prediction of severity and mortality on admission, the NLR. NMR, and LMR were significant (P< 0.001). The NLR, NMR, and LMR had an area under the receiver operating characteristics curve (AUROC) of 0.86 (95% CI of 0.80-0.91), 0.822 (95% CI of 0.76-0.88), and 0.69 (95% CI of 0.60-0.79), respectively, for severity. While the NIA NMR, and LMR had an AUROC value of 0.85 (95% CI of 0.79-0.92), 0.83 (95% CI of 0.77-0.89), and 0.67 (95% CI of 0.57-0.78), respectively, for mortality. Conclusion: With the increase in severity there was an increase in the total leukocyte count and absolute neutrophil count while the absolute lymphocyte count decreased. On admission, the cut-off value of NLR >5.2, NMR >12.1, while LMR <2.4 may predict severity and mortality in COVID-19.
引用
收藏
页码:3423 / 3429
页数:7
相关论文
共 30 条
[1]   Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection [J].
Bellmann-Weiler, Rosa ;
Lanser, Lukas ;
Barket, Robert ;
Rangger, Lukas ;
Schapfl, Anna ;
Schaber, Marc ;
Fritsche, Gernot ;
Woell, Ewald ;
Weiss, Guenter .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (08) :1-11
[2]   Neutrophil-To-Lymphocyte Ratio: An Emerging Marker Predicting Prognosis in Elderly Adults with Community-Acquired Pneumonia [J].
Cataudella, Emanuela ;
Giraffa, Chiara M. ;
Di Marca, Salvatore ;
Pulvirenti, Alfredo ;
Alaimo, Salvatore ;
Pisano, Marcella ;
Terranova, Valentina ;
Corriere, Thea ;
Ronsisvalle, Maria L. ;
Di Quattro, Rosario ;
Stancanelli, Benedetta ;
Giordano, Mauro ;
Vancheri, Carlo ;
Malatino, Lorenzo .
JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2017, 65 (08) :1796-1801
[3]   COVID-19: Review and hematologic impact [J].
de Oliveira Toledo, Silvia Leticia ;
Nogueira, Leilismara Sousa ;
Carvalho, Maria das Gracas ;
Alves Rios, Danyelle Romana ;
Pinheiro, Melina de Barros .
CLINICA CHIMICA ACTA, 2020, 510 :170-176
[4]   Hematologic parameters in patients with COVID-19 infection (vol 95, pg E131, 2020) [J].
Fan, B. E. ;
Chong, V. C. L. ;
Chan, S. S. W. ;
Lim, G. H. ;
Lim, K. G. E. ;
Tan, G. B. ;
Mucheli, S. S. ;
Kuperan, P. ;
Ong, K. H. .
AMERICAN JOURNAL OF HEMATOLOGY, 2020, 95 (11) :1442-1442
[5]   Hematologic parameters in patients with COVID-19 infection [J].
Fan, Bingwen Eugene ;
Chong, Vanessa Cui Lian ;
Chan, Stephrene Seok Wei ;
Lim, Gek Hsiang ;
Lim, Kian Guan Eric ;
Tan, Guat Bee ;
Mucheli, Sharavan Sadasiv ;
Kuperan, Ponnudurai ;
Ong, Kiat Hoe .
AMERICAN JOURNAL OF HEMATOLOGY, 2020, 95 (06) :E131-E134
[6]   Global and local mutations in Bangladeshi SARS-CoV-2 genomes [J].
Hasan, Md. Mahbub ;
Das, Rasel ;
Rasheduzzaman, Md. ;
Hussain, Md. Hamed ;
Muzahid, Nazmul Hasan ;
Salauddin, Asma ;
Rumi, Meheadi Hasan ;
Rashid, S. M. Mahbubur ;
Siddiki, A. M. A. M. Zonaed ;
Mannan, Adnan .
VIRUS RESEARCH, 2021, 297
[7]   Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis [J].
Henry, Brandon Michael ;
de Oliveira, Maria Helena Santos ;
Benoit, Stefanie ;
Plebani, Mario ;
Lippi, Giuseppe .
CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2020, 58 (07) :1021-1028
[8]   Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis [J].
Huang, Ian ;
Pranata, Raymond .
JOURNAL OF INTENSIVE CARE, 2020, 8 (01)
[9]   A new haematocytometric index: Predicting severity and mortality risk value in COVID-19 patients [J].
Kilercik, Meltem ;
Demirelce, Ozlem ;
Serdar, Muhittin Abdulkadir ;
Mikailova, Parvana ;
Serteser, Mustafa .
PLOS ONE, 2021, 16 (08)
[10]   Decreased T cell populations contribute to the increased severity of COVID-19 [J].
Liu, Rui ;
Wang, Ying ;
Li, Jie ;
Han, Huan ;
Xia, Zunen ;
Liu, Fang ;
Wu, Kailang ;
Yang, Lan ;
Liu, Xinghui ;
Zhu, Chengliang .
CLINICA CHIMICA ACTA, 2020, 508 :110-114