Polarizing an antiferromagnet by optical engineering of the crystal field

被引:149
作者
Disa, Ankit S. [1 ,2 ]
Fechner, Michael [1 ]
Nova, Tobia F. [1 ]
Liu, Biaolong [1 ]
Foerst, Michael [1 ]
Prabhakaran, Dharmalingam [3 ]
Radaelli, Paolo G. [3 ]
Cavalleri, Andrea [1 ,2 ,3 ]
机构
[1] Max Planck Inst Struct & Dynam Matter, Hamburg, Germany
[2] Hamburg Ctr Ultrafast Imaging, Hamburg, Germany
[3] Univ Oxford, Dept Phys, Clarendon Lab, Oxford, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
MAGNETIC CIRCULAR-DICHROISM; IRON; PIEZOMAGNETISM; FLUORIDES; SPECTRA; COBALT; COF2;
D O I
10.1038/s41567-020-0936-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Strain engineering is widely used to manipulate the electronic and magnetic properties of complex materials. For example, the piezomagnetic effect provides an attractive route to control magnetism with strain. In this effect, the staggered spin structure of an antiferromagnet is decompensated by breaking the crystal field symmetry, which induces a ferrimagnetic polarization. Piezomagnetism is especially appealing because, unlike magnetostriction, it couples strain and magnetization at linear order, and allows for bi-directional control suitable for memory and spintronics applications. However, its use in functional devices has so far been hindered by the slow speed and large uniaxial strains required. Here we show that the essential features of piezomagnetism can be reproduced with optical phonons alone, which can be driven by light to large amplitudes without changing the volume and hence beyond the elastic limits of the material. We exploit nonlinear, three-phonon mixing to induce the desired crystal field distortions in the antiferromagnet CoF2. Through this effect, we generate a ferrimagnetic moment of 0.2 mu(B)per unit cell, nearly three orders of magnitude larger than achieved with mechanical strain. This paper shows how lattice distortions induced by a laser pulse can create a ferrimagnetic moment in an antiferromagnet. This mechanism gives a magnetic response that is orders of magnitude larger than using mechanical strain.
引用
收藏
页码:937 / +
页数:6
相关论文
共 39 条
[1]  
Abrabam A, 1997, P ROY SOC LOND A MAT, V206, P173
[2]   Fundamentals and applications of the Landau-Lifshitz-Bloch equation [J].
Atxitia, U. ;
Hinzke, D. ;
Nowak, U. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (03)
[3]   Landau-Lifshitz-Bloch equation for ferrimagnetic materials [J].
Atxitia, U. ;
Nieves, P. ;
Chubykalo-Fesenko, O. .
PHYSICAL REVIEW B, 2012, 86 (10)
[4]   INFRARED LATTICE-VIBRATION SPECTRA IN NIF2 COF2 AND FEF2 [J].
BALKANSK.M ;
MOCH, P ;
PARISOT, G .
JOURNAL OF CHEMICAL PHYSICS, 1966, 44 (03) :940-&
[5]   Antiferromagnetic spintronics [J].
Baltz, V. ;
Manchon, A. ;
Tsoi, M. ;
Moriyama, T. ;
Ono, T. ;
Tserkovnyak, Y. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[6]   180-DEGREES ANTI-FERROMAGNETIC DOMAINS IN MNF2 BY NEUTRON TOPOGRAPHY [J].
BARUCHEL, J ;
SCHLENKER, M ;
BARBARA, B .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1980, 15-8 (JAN-) :1510-1512
[7]  
Bolz R.E., 1973, CRC HDB TABLES APPL
[8]  
Borovik-Romanov A. S., 1994, Ferroelectrics, V162, P153, DOI 10.1080/00150199408245101
[9]  
BOROVIKROMANOV AS, 1960, SOV PHYS JETP-USSR, V11, P786
[10]   Divergent Nematic Susceptibility in an Iron Arsenide Superconductor [J].
Chu, Jiun-Haw ;
Kuo, Hsueh-Hui ;
Analytis, James G. ;
Fisher, Ian R. .
SCIENCE, 2012, 337 (6095) :710-712