Shear wave splitting observations and implications on stress regimes in the Los Angeles basin, California

被引:7
|
作者
Li, YG
机构
关键词
D O I
10.1029/96JB00878
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A systematic analysis of three-component seismograms recorded at 15 stations from earthquakes occurring at depths of 5 to 18 km beneath the Los Angeles basin and adjacent areas during the period between 1988 and 1994 shows 20 to 160 ms shear wave splitting. Shallow events exhibit little splitting, while deeper events show progressively greater splitting with depth. The preferred polarization direction of the fast Shear wave is nearly N-S, consistent with the direction of the regional maximum horizontal compressive stress but independent of the azimuth between the event and station. We interpret that the shear wave splitting is caused by fluid-filled crustal microcracks and microfractures aligned in the N-S direction. The shear wave splitting observations of 2.8 to 7.8 ms/km can be explained in terms of an anisotropic crust containing vertical cracks with the apparent crack density of 0.023-0.08. On a regional basis, the crack density may vary from station to station, but we find that the apparent crack density in the strike-slip region of the Newport-Inglewood fault and the Whittler fault is higher than in the reverse-thrusting Santa Monica Mountains and Pales Verdes Hills. No systematic change of shear wave splitting in the Los Angeles basin is found in this study.
引用
收藏
页码:13947 / 13961
页数:15
相关论文
共 50 条