Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser

被引:119
作者
Wu, Hongpeng [1 ]
Dong, Lei [1 ]
Zheng, Huadan [1 ]
Liu, Xiaoli [1 ]
Yin, Xukun [1 ]
Ma, Weiguang [1 ]
Zhang, Lei [1 ]
Yin, Wangbao [1 ]
Jia, Suotang [1 ]
Tittel, Frank K. [2 ]
机构
[1] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Rice Univ, Dept Elect & Comp Engn, Houston, TX USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Trace gas detection; Quartz enhanced photoacoustic spectroscopy; Spectrophone; Erbium doped fiber amplifier; Modulation cancelation method; MODULATION CANCELLATION METHOD; PHOTOACOUSTIC-SPECTROSCOPY; DIODE; FREQUENCY;
D O I
10.1016/j.snb.2015.06.049
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A power-boosted quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor is developed for sub-ppm H2S trace-gas detection in the near-infrared spectral region. The sensor is based on off-beam QEPAS with an erbium-doped fiber amplified 1582 nm distributed feedback (DFB) laser. The offset of the sensor floor noise caused by stray light and gas flow can be removed by an electrical modulation cancellation method, which lowers the noise to the theoretical thermal noise level. The sensor was optimized in terms of gas pressure and current modulation depth for H2S detection at 6320.6 cm(-1). The linearity of the sensor response to the laser power and H2S concentration confirms that saturation does not occur. With similar to 1.4W optical excitation power and 67 s averaging time, a H2S detection sensitivity of 142 ppbv (parts per billion by volume) is achieved at atmospheric pressure and room temperature, which is the best value, reported in the literature so far for H2S QEPAS sensors. A side-by-side sensitivity comparison for different sensor systems is also reported. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:666 / 672
页数:7
相关论文
共 47 条
[11]   Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor [J].
Dong, Lei ;
Spagnolo, Vincenzo ;
Lewicki, Rafal ;
Tittel, Frank K. .
OPTICS EXPRESS, 2011, 19 (24) :24037-24045
[12]  
Dumitras DC, 2007, J OPTOELECTRON ADV M, V9, P3655
[13]   DIODE-LASER SPECTROSCOPY OF H-2 S-32 AROUND 0.82 MU-M [J].
FLAUD, JM ;
GROSSKLOSS, R ;
RAI, SB ;
STUBER, R ;
DEMTRODER, W ;
TATE, DA ;
WANG, LG ;
GALLAGHER, TF .
JOURNAL OF MOLECULAR SPECTROSCOPY, 1995, 172 (01) :275-281
[14]  
France PW., 1991, Optical fiber lasers and amplifiers
[15]   SENSITIVE INTRACAVITY PHOTOACOUSTIC MEASUREMENTS WITH A CO2 WAVE-GUIDE LASER [J].
HARREN, FJM ;
BIJNEN, FGC ;
REUSS, J ;
VOESENEK, LACJ ;
BLOM, CWPM .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1990, 50 (02) :137-144
[16]   Temperature effects in tuning fork enhanced interferometric photoacoustic spectroscopy [J].
Koehring, M. ;
Boettger, S. ;
Willer, U. ;
Schade, W. .
OPTICS EXPRESS, 2013, 21 (18) :20911-20922
[17]   Tuning fork enhanced interferometric photoacoustic spectroscopy: a new method for trace gas analysis [J].
Koehring, M. ;
Pohlkoetter, A. ;
Willer, U. ;
Angelmahr, M. ;
Schade, W. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 102 (01) :133-139
[18]   QEPAS methane sensor performance for humidified gases [J].
Kosterev, A. A. ;
Bakhirkin, Y. A. ;
Tittel, F. K. ;
McWhorter, S. ;
Ashcraft, B. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 92 (01) :103-109
[19]   QEPAS for chemical analysis of multi-component gas mixtures [J].
Kosterev, A. A. ;
Dong, L. ;
Thomazy, D. ;
Tittel, F. K. ;
Overby, S. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 101 (03) :649-659
[20]   QEPAS detector for rapid spectral measurements [J].
Kosterev, A. A. ;
Buerki, P. R. ;
Dong, L. ;
Reed, M. ;
Day, T. ;
Tittel, F. K. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 100 (01) :173-180