Passivity-based fractional-order integral sliding-mode control design for uncertain fractional-order nonlinear systems

被引:31
作者
Dadras, Sara [1 ,2 ]
Momeni, Hamid Reza [1 ]
机构
[1] Tarbiat Modares Univ, Automat & Instruments Lab, Dept Elect Engn, Tehran, Iran
[2] Utah State Univ, CSOIS, Elect & Comp Engn Dept, Logan, UT 84322 USA
关键词
Fractional-order system; Uncertain system; Fractional sliding-mode manifold; Passivity; Linear matrix inequality (LMI); CHAOS; VAN;
D O I
10.1016/j.mechatronics.2013.05.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper concerns with the problem of designing a passivity-based fractional-order (FO) integral sliding mode controller for uncertain FO nonlinear systems. Utilizing the FO calculus, it is showed that the state trajectories of the closed-loop system reach the FO switching manifold in finite time. The control law ensures the asymptotical stability on the sliding surface. A parameter adjustment scheme for FO integral sliding surface is proposed by using the linear matrix inequality (LMI) approach. The proposed controller can be applied to different systems such as chaotic systems. Finally, simulation results are provided to show the effectiveness of the proposed method controlling chaos in FO Chua circuit and FO Van-der-Pol oscillator. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:880 / 887
页数:8
相关论文
共 39 条
[1]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]   ON THE FRACTIONAL CALCULUS MODEL OF VISCOELASTIC BEHAVIOR [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1986, 30 (01) :133-155
[4]   Analysis of the van der pol oscillator containing derivatives of fractional order [J].
Barbosa, Ramiro S. ;
Machado, J. A. Tenreiro ;
Vinagre, B. M. ;
Calderon, A. J. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1291-1301
[5]   Digital second-order sliding mode control for uncertain nonlinear systems [J].
Bartolini, G ;
Pisano, A ;
Usai, E .
AUTOMATICA, 2001, 37 (09) :1371-1377
[6]   Multi-input sliding mode control of a class of uncertain nonlinear systems [J].
Bartolini, G ;
Ferrara, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (11) :1662-1666
[7]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[8]   LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems [J].
Choi, Han Ho .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (04) :736-742
[9]  
Dadras S, 2014, ASIAN J CONTROL, V16, P1
[10]   Control of a fractional-order economical system via sliding mode [J].
Dadras, Sara ;
Momeni, Hamid Reza .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (12) :2434-2442