Alternate approximation of concave cost functions for process design and supply chain optimization problems

被引:12
作者
Cafaro, Diego C. [1 ]
Grossmann, Ignacio E. [2 ]
机构
[1] INTEC UNL CONICET, RA-3000 Santa Fe, Argentina
[2] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
基金
美国安德鲁·梅隆基金会;
关键词
Concave cost functions; Nonlinear optimization; Process synthesis; EXCHANGER NETWORK SYNTHESIS;
D O I
10.1016/j.compchemeng.2013.10.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This short note presents an alternate approximation of concave cost functions used to reflect economies of scale in process design and supply chain optimization problems. To approximate the original concave function, we propose a logarithmic function that is exact and has bounded gradients at zero values in contrast to other approximation schemes. We illustrate the application and advantages of the proposed approximation. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:376 / 380
页数:5
相关论文
共 11 条
[1]   Global Superstructure Optimization for the Design of Integrated Process Water Networks [J].
Ahmetovic, Elvis ;
Grossmann, Ignacio E. .
AICHE JOURNAL, 2011, 57 (02) :434-457
[2]  
[Anonymous], 2010, NONLINEAR PROGRAMMIN
[3]  
Bazaraa M. S., 1994, NONLINEAR PROGRAMMIN
[4]  
Biegler L., 1997, SYSTEMATIC METHODS C
[5]   Retrospective on optimization [J].
Biegler, LT ;
Grossmann, IE .
COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) :1169-1192
[6]  
Cafaro D. C., 2013, AICHE J UNPUB
[7]   HEAT-EXCHANGER NETWORK SYNTHESIS WITHOUT DECOMPOSITION [J].
CIRIC, AR ;
FLOUDAS, CA .
COMPUTERS & CHEMICAL ENGINEERING, 1991, 15 (06) :385-396
[8]   OBJECTIVE FUNCTION APPROXIMATIONS IN MATHEMATICAL-PROGRAMMING [J].
GEOFFRION, AM .
MATHEMATICAL PROGRAMMING, 1977, 13 (01) :23-37
[9]  
McCarl BA., 2011, Expanded GAMS User Guide Version 23.6
[10]  
Szitkai Z, 2003, COMP AID CH, V14, P323