BOUNDEDLY SOLVABILITY OF FIRST ORDER DELAY DIFFERENTIAL OPERATORS WITH PIECEWISE CONSTANT ARGUMENTS

被引:0
作者
Al, P. Ipek [1 ]
Ismailov, Z. I. [2 ]
机构
[1] Karadeniz Tech Univ, Inst Nat Sci, TR-61080 Trabzon, Turkey
[2] Karadeniz Tech Univ, Dept Math, TR-61080 Trabzon, Turkey
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2019年 / 9卷 / 02期
关键词
Boundedly solvable operator; differential operator with piecewise constant argument; spectrum; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the methods of operator theory, we investigate all boundedly solvable extensions of a minimal operator generated by first order delay differential-operator expression with piecewise constant argument in the Hilbert space of vector-functions at finite interval. Also spectrum of these extensions is studied.
引用
收藏
页码:396 / 403
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 1991, Math. Appl., Sov. Ser. Dordrecht
[2]   Advanced Impulsive Differential Equations with Piecewise Constant Arguments [J].
Bereketoglu, H. ;
Seyhan, G. ;
Ogun, A. .
MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (02) :175-187
[3]  
Bereketoglu H., 2017, ELECT J DIFFERENTIAL, V2017, P1
[4]   On the Oscillation of a Third Order Nonlinear Differential Equation with Piecewise Constant Arguments [J].
Bereketoglu, Huseyin ;
Lafci, Mehtap ;
Oztepe, Gizem S. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (03)
[5]   First order differential equations with piecewise constant arguments and nonlinear boundary value conditions [J].
Cabada, Alberto ;
Bosco Ferreiro, Juan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) :124-136
[6]   RETARDED DIFFERENTIAL-EQUATIONS WITH PIECEWISE CONSTANT DELAYS [J].
COOKE, KL ;
WIENER, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 99 (01) :265-297
[7]  
Goldstein J.A., 1985, Oxford Mathematical Monographs
[8]  
Hormander L., 1995, ACTA MATH, V94, P161
[9]  
Ismailov Z. I., 2014, ABSTR APPL ANAL, V2014, P1
[10]   Oscillatory and Periodic Solutions of Impulsive Differential Equations with Piecewise Constant Argument [J].
Karakoc, Fatma ;
Bereketoglu, Huseyin ;
Seyhan, Gizem .
ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (01) :499-510