High performance linear low density polyethylene nanocomposites reinforced by two-dimensional layered nanomaterials

被引:14
作者
Li, Tao [1 ]
Sun, Haoyang [1 ]
Lei, Fan [1 ,2 ]
Li, Dandan [1 ]
Leng, Jing [1 ]
Chen, Lei [1 ]
Huang, Yi [2 ]
Sun, Dazhi [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[2] Nankai Univ, Sch Mat Sci & Engn, Tianjin 300071, Peoples R China
基金
中国博士后科学基金;
关键词
Linear low density polyethylene; Heat distortion temperature; Mechanical properties; ALPHA-ZIRCONIUM PHOSPHATE; MECHANICAL-PROPERTIES; SILICATE NANOCOMPOSITES; FLAMMABILITY PROPERTIES; ASPECT-RATIO; BEHAVIOR; CLAY; MORPHOLOGY; EPOXY; NANOPLATELETS;
D O I
10.1016/j.polymer.2019.03.072
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Two-dimensional (2D) layered nanomaterials, including pristine a-zirconium phosphates (ZrP), amine-intercalated organophilic alpha-zirconium phosphates (OZrP) and organophilic montmorillonite (OMMT), are directly incorporated into linear low density polyethylene (LLDPE) by injection molding. ZrP and OZrP achieve good dispersion in the LLDPE matrices while OMMT forms agglomerations as observed by scanning electron microscope (SEM). The differential scanning calorimetry (DSC) analysis reveals that well-dispersed ZrP and OZrP could act as a nucleating agent to increase crystallinity of LLDPE while the agglomerated OMMT decreases the crystallinity of the polymer matrix. Tensile tests show that the strength and ductility of the LLDPE/ZrP nanocomposites can be enhanced simultaneously, due to the high modulus and parallel alignment along the injection direction for ZrP in matrix. The heat resistance of LLDPE, can also be enhanced by the addition of 2D nanoplatelets, among which ZrP perform the best, showing an increase of similar to 16 degrees C in heat distortion temperature.
引用
收藏
页码:142 / 151
页数:10
相关论文
共 58 条
[1]  
Amit NautiyalM.Q., 2018, Eng. Sci, P70, DOI DOI 10.30919/ES8D776
[2]   EFFECT OF SHORT-CHAIN BRANCHING ON THE MORPHOLOGY OF LLDPE-ORIENTED THIN-FILMS [J].
BRADY, JM ;
THOMAS, EL .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1988, 26 (12) :2385-2398
[3]   Morphology, thermal stability, and mechanical behavior of [poly(propylene)-grafted maleic anhydride]-layered expanded graphite oxide composites [J].
Cerezo, Frances T. ;
Preston, Christopher M. L. ;
Shanks, Robert A. .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2007, 292 (02) :155-168
[4]   DYNAMIC MECHANICAL-BEHAVIOR OF FILLED POLYETHYLENES AND MODEL COMPOSITES [J].
CHACKO, VP ;
KARASZ, FE ;
FARRIS, RJ .
POLYMER ENGINEERING AND SCIENCE, 1982, 22 (15) :968-974
[5]   Exfoliation of layered zirconium phosphate nanoplatelets by melt compounding [J].
Chen, Lei ;
Sun, Dazhi ;
Li, Jin ;
Zhu, Guangdao .
MATERIALS & DESIGN, 2017, 122 :247-254
[6]   Morphology and fracture behaviour of polyethylene/Mg-Al layered double hydroxide (LDH) nanocomposites [J].
Costa, F. R. ;
Satapathy, B. K. ;
Wagenknecht, U. ;
Weidisch, R. ;
Heinrich, G. .
EUROPEAN POLYMER JOURNAL, 2006, 42 (09) :2140-2152
[7]   Thermoplastic polyurethane-carbon black nanocomposite coating: Fabrication and solid particle erosion resistance [J].
Dong, Mengyao ;
Li, Qiang ;
Liu, Hu ;
Liu, Chuntai ;
Wujcik, Evan K. ;
Shao, Qian ;
Ding, Tao ;
Mai, Xianmin ;
Shen, Changyu ;
Guo, Zhanhu .
POLYMER, 2018, 158 :381-390
[8]   Modeling properties of nylon 6/clay nanocomposites using composite theories [J].
Fornes, TD ;
Paul, DR .
POLYMER, 2003, 44 (17) :4993-5013
[9]   Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene [J].
Fu, X ;
Qutubuddin, S .
POLYMER, 2001, 42 (02) :807-813
[10]   Structural and Mechanical Behavior of Layered Zirconium Phosphonate as a Distributed Phase in Polycaprolactone [J].
Furman, Benjamin R. ;
Wellinghoff, Stephen T. ;
Laine, Richard M. ;
Chan, Kwai S. ;
Nicolella, Daniel P. ;
Rawls, H. Ralph .
JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 114 (02) :993-1001