Some convolution properties of a certain class of p-valent analytic functions

被引:1
作者
Aouf, M. K. [1 ]
Ling, Yi [2 ]
机构
[1] Univ Mansoura, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] Univ Toledo, Dept Math, Toledo, OH 43606 USA
关键词
p-Valent; Analytic functions; Convolution; Integral operator; UNIVALENT-FUNCTIONS; HYPERGEOMETRIC-FUNCTIONS; INTEGRAL OPERATOR; STARLIKE;
D O I
10.1016/j.aml.2008.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A(p) denote the class of functions f (z) = z(p) +Sigma(infinity)(n=p+1) a(n)z(n) (p is an element of N = (1,2,...)) which are analytic and p-valent in the unit disc U = {z : vertical bar z vertical bar < 1}. The objective of the present work is to obtain some convolution properties for the class P(p,alpha) = {f(z) is an element of A(p) : Re{f'(z)/z(p-1)} > alpha, 0 <= alpha < p, p is an element of N, z is an element of U}. Also we prove that the integral operator integral(p,c)(f) is an element of P(p,beta)(f(z) is an element of A(p)), where the value beta is sharp. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:361 / 364
页数:4
相关论文
共 12 条
[1]   CONVEX AND STARLIKE UNIVALENT FUNCTIONS [J].
BERNARDI, SD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 135 (JAN) :429-&
[2]   STARLIKE AND PRESTARLIKE HYPERGEOMETRIC-FUNCTIONS [J].
CARLSON, BC ;
SHAFFER, DB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :737-745
[3]   SOME CLASSES OF REGULAR UNIVALENT FUNCTIONS [J].
LIBERA, RJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (04) :755-&
[4]   ON RADIUS OF UNIVALENCE OF CERTAIN ANALYTIC FUNCTIONS [J].
LIVINGSTON, AE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (02) :352-+
[5]  
MacGregor T.H., 1962, Trans. Am. Math. Soc., P532, DOI [DOI 10.1090/S0002-9947-1962-0140674-7, 10.1090/S0002-9947-1962-0140674-7]
[6]   UNIVALENT AND STARLIKE GENERALIZED HYPERGEOMETRIC-FUNCTIONS [J].
OWA, S ;
SRIVASTAVA, HM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1987, 39 (05) :1057-1077
[7]   ON ANALYTIC-FUNCTIONS WITH REFERENCE TO THE BERNARDI INTEGRAL OPERATOR [J].
REDDY, GL ;
PADMANABHAN, KS .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1982, 25 (03) :387-396
[8]   On the theory of univalent functions [J].
Robertson, MIS .
ANNALS OF MATHEMATICS, 1936, 37 :374-408
[9]   AN APPLICATION OF A CERTAIN INTEGRAL OPERATOR [J].
SAITOH, H ;
OWA, S ;
SEKINE, T ;
NUNOKAWA, M ;
YAMAKAWA, R .
APPLIED MATHEMATICS LETTERS, 1992, 5 (02) :21-24
[10]  
Saitoh H., 1992, Mathematica Japonica, V37, P871