A note on a theorem of Ljunggren and the Diophantine equations x2-kxy2+y4=1,4

被引:17
作者
Walsh, G [1 ]
机构
[1] Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
关键词
Positive Integer; Recent Result; Diophantine Equation; Fundamental Unit; Quadratic Field;
D O I
10.1007/s000130050376
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D denote a positive nonsquare integer. Ljunggren has shown that there are at most two solutions in positive integers (x,y) to the Diophantine equation x(2) - Dy-4 = 1, and that if two such solutions (x(1),y(1)), (x(2),y(2)) exist, with x(1) < x(2), then x(1) + y(1)(2)root D is the fundamental unit epsilon(D) in the quadratic field Q(root D), and x(2) + y(2)(2)root D is either epsilon(D)(2) or E-D(4). The purpose of this note is twofold. Using a recent result of Cohn, we generalize Ljunggren's theorem. We then use this generalization to completely solve the Diophantine equations x(2) - kxy(2) + y(4) = 1,4.
引用
收藏
页码:119 / 125
页数:7
相关论文
共 12 条
[1]  
BENNETT MA, IN PRESS P AMS
[2]   DIOPHANTINE EQUATION 3X4-2Y3=1 [J].
BUMBY, RT .
MATHEMATICA SCANDINAVICA, 1967, 21 (01) :144-&
[3]   12 DIOPHANTINE EQUATIONS [J].
COHN, JHE .
ARCHIV DER MATHEMATIK, 1995, 65 (02) :130-133
[4]  
Cohn JHE, 1997, ACTA ARITH, V78, P401
[5]  
Cohn JHE, 1964, J LOND MATH SOC, V39, P537, DOI [DOI 10.1112/JLMS/S1-39.1.537, 10.1112/jlms/s1-39.1.537]
[6]   THE DIOPHANTINE EQUATION X4-KX2Y2+Y4=1 [J].
CUSICK, TW .
ARCHIV DER MATHEMATIK, 1992, 59 (04) :345-347
[7]   An extended theory of Lucas' functions [J].
Lehmer, DH .
ANNALS OF MATHEMATICS, 1930, 31 :419-448
[8]  
LJUNGGREN W, 1936, OSLO VID AKAD SKRIFT, V12
[9]  
LUNGGREN W, 1942, AVH NORSK VID AKAD O, P1
[10]   Square-classes in Lucas sequences having odd parameters [J].
McDaniel, WL ;
Ribenboim, P .
JOURNAL OF NUMBER THEORY, 1998, 73 (01) :14-27