The change-point problem for dependent observations

被引:40
作者
Giraitis, L
Leipus, R
Surgailis, D
机构
[1] UNIV HEIDELBERG,D-69120 HEIDELBERG,GERMANY
[2] VILNIUS STATE UNIV,DEPT MATH,LT-2006 VILNIUS,LITHUANIA
[3] INST MATH & INFORM,LT-2600 VILNIUS,LITHUANIA
关键词
change-point problem; empirical processes; long-memory; Kolmogorov-Smirnov test;
D O I
10.1016/0378-3758(95)00148-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the change-point problem for the marginal distribution function of a strictly stationary time series. Asymptotic behavior of Kolmogorov-Smimov type tests and estimators of the change point is studied under the null hypothesis and converging alternatives, The discussion is based on a general empirical process approach which enables a unified treatment of both short-memory (weakly dependent) and long-memory time series. In particular, the case of long-memory moving-average process X(j) = Sigma(s less than or equal to j)b(j-s)xi(s) is studied, using the recent results of Giraitis and Surgailis (1994).
引用
收藏
页码:297 / 310
页数:14
相关论文
共 35 条