Characterization of plant glutamine synthetase S-nitrosation

被引:11
作者
Silva, Liliana S. [1 ,2 ,3 ,4 ]
Alves, Mariana Q. [1 ,2 ]
Seabra, Ana R. [4 ]
Carvalho, Helena G. [1 ,2 ,3 ,4 ]
机构
[1] Univ Porto, IBMC, Rua Alfredo Allen, P-4200135 Porto, Portugal
[2] Univ Porto, I3S, Rua Alfredo Allen, P-4200135 Porto, Portugal
[3] Univ Porto, Fac Ciencias, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
[4] Univ Porto, Ctr Invest Biodiversidade & Recursos Genet, Campus Vairao,Rua Padre Armando Quintas 7, P-4485661 Vairao, Portugal
来源
NITRIC OXIDE-BIOLOGY AND CHEMISTRY | 2019年 / 88卷
关键词
Glutamine synthetase; Nitric oxide; Medicago truncatula; S-nitrosation; Root nodule; NITRIC-OXIDE PRODUCTION; MEDICAGO-TRUNCATULA; NITROSYLATED PROTEINS; ROOT-NODULES; POSTTRANSLATIONAL REGULATION; REVERSIBLE INHIBITION; PROTEOMIC ANALYSIS; BRASSICA-JUNCEA; COLD-STRESS; EXPRESSION;
D O I
10.1016/j.niox.2019.04.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The identification of S-nitrosated substrates and their target cysteine residues is a crucial step to understand the signaling functions of nitric oxide (NO) inside the cells. Here, we show that the key nitrogen metabolic enzyme glutamine synthetase (GS) is a S-nitrosation target in Medicago truncatula and characterize the molecular determinants and the effects of this NO-induced modification on different GS isoenzymes. We found that all the four M. truncatula GS isoforms are S-nitrosated, but despite the high percentage of amino acid identity between the four proteins, S-nitrosation only affects the activity of the plastid-located enzymes, leading to inactivation. A biotin-switch/mass spectrometry approach revealed that cytosolic and plastid-located GSs share an S-nitrosation site at a conserved cysteine residue, but the plastidic enzymes contain additional S-nitrosation sites at non conserved cysteines, which are accountable for enzyme inactivation. By site-directed mutagenesis, we identified Cys369 as the regulatory S-nitrosation site relevant for the catalytic function of the plastid-located GS and an analysis of the structural environment of the SNO-targeted cysteines in cytosolic and plastid-located isoenzymes explains their differential regulation by S-nitrosation and elucidates the mechanistic by which S-nitrosation of Cys369 leads to enzyme inactivation. We also provide evidence that both the cytosolic and plastid-located GSs are endogenously S-nitrosated in leaves and root nodules of M. truncatula, supporting a physiological meaning for S-nitrosation. Taken together, these results provide new insights into the molecular details of the differential regulation of individual GS isoenzymes by NO-derived molecules and open new paths to explore the biological significance of the NO-mediated regulation of this essential metabolic enzyme.
引用
收藏
页码:73 / 86
页数:14
相关论文
共 63 条
[1]   S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata -: ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition [J].
Abat, Jasmeet K. ;
Mattoo, Autar K. ;
Deswal, Renu .
FEBS JOURNAL, 2008, 275 (11) :2862-2872
[2]   Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: Change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity [J].
Abat, Jasmeet Kaur ;
Deswal, Renu .
PROTEOMICS, 2009, 9 (18) :4368-4380
[3]   Nitric oxide production in plants: an update [J].
Astier, Jeremy ;
Gross, Inonge ;
Durner, Joerg .
JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (14) :3401-3411
[4]   Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update [J].
Astier, Jeremy ;
Lindermayr, Christian .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (11) :15193-15208
[5]   Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules [J].
Baudouin, Emmanuel ;
Pieuchot, Laurent ;
Engler, Gilbert ;
Pauly, Nicolas ;
Puppo, Alain .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2006, 19 (09) :970-975
[6]   Factors influencing protein tyrosine nitration-structure-based predictive models [J].
Bayden, Alexander S. ;
Yakovlev, Vasily A. ;
Graves, Paul R. ;
Mikkelsen, Ross B. ;
Kellogg, Glen E. .
FREE RADICAL BIOLOGY AND MEDICINE, 2011, 50 (06) :749-762
[7]   Nitric oxide buffering and conditional nitric oxide release in stress response [J].
Begara-Morales, Juan C. ;
Chaki, Mounira ;
Valderrama, Raquel ;
Sanchez-Calvo, Beatriz ;
Mata-Perez, Capilla ;
Padilla, Maria N. ;
Corpas, Francisco J. ;
Barroso, Juan B. .
JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (14) :3425-3438
[8]   Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation [J].
Begara-Morales, Juan C. ;
Sanchez-Calvo, Beatriz ;
Chaki, Mounira ;
Mata-Perez, Capilla ;
Valderrama, Raquel ;
Padilla, Maria N. ;
Lopez-Jaramillo, Javier ;
Luque, Francisco ;
Corpas, Francisco J. ;
Barroso, Juan B. .
JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (19) :5983-5996
[9]   Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation [J].
Begara-Morales, Juan C. ;
Sanchez-Calvo, Beatriz ;
Chaki, Mounira ;
Valderrama, Raquel ;
Mata-Perez, Capilla ;
Lopez-Jaramillo, Javier ;
Padilla, Maria N. ;
Carreras, Alfonso ;
Corpas, Francisco J. ;
Barroso, Juan B. .
JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (02) :527-538
[10]   S-Nitrosoglutathione [J].
Broniowska, Katarzyna A. ;
Diers, Anne R. ;
Hogg, Neil .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2013, 1830 (05) :3173-3181