3-Manifold invariants derived from the intersecting kernels

被引:0
作者
Li, Fengling [1 ]
Lei, Fengchun [1 ]
Wu, Jie [2 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China
[2] Natl Univ Singapore, Dept Math, Block S17,10 Lower Kent Ridge Rd, Singapore 119076, Singapore
关键词
3-manifold; Heegaard splitting; intersecting kernel; invariant; HEEGAARD-SPLITTINGS; LENTICULAR SPACES; HOMOMORPHISMS; CONJECTURE;
D O I
10.1142/S0129167X16501093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The intersecting kernel of a Heegaard splitting H1 boolean OR(S) H-2 for a compact orientable 3-manifold M is the subgroup K = Ker(i(1*)) boolean AND Ker(i(2*)) of pi(1)(S), where i(j*) : pi(1)(S) -> pi(1)(H-j) is the homomorphism induced by the inclusion i(j) : S curved right arrow H-j,H- j = 1, 2. In the paper, we obtain some invariants of 3-manifolds M from certain quotient groups of the intersecting kernels of their Heegaard splittings. We also list two algebraic problems related to the new invariants, which might be interesting to study.
引用
收藏
页数:9
相关论文
共 27 条
[1]  
[Anonymous], 1898, Forstudier til en topologisk teori for de algebraiske fladers sammenhaeng
[2]  
Berestovskii V. N., 2007, IZV VYSSH UCHEBN ZAV, V9, p[3, 1]
[3]  
Bestvina M., 2014, ARXIV14127847V2
[4]   Extending pseudo-Anosov maps into compression bodies [J].
Biringer, Ian ;
Johnson, Jesse ;
Minsky, Yair .
JOURNAL OF TOPOLOGY, 2013, 6 (04) :1019-1042
[5]  
Birman J. S., 1974, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V17, P214
[6]  
Birman J. S., 1975, ANN MATH STUD, V84, P137
[7]   DIFFEOTOPIES OF LENTICULAR SPACES [J].
BONAHON, F .
TOPOLOGY, 1983, 22 (03) :305-314
[8]  
BONAHON F, 1983, ANN SCI ECOLE NORM S, V16, P451
[9]   The explicit algebraic autonomy of Artin presentation theory and the Fox Calculus. I [J].
Calcut, J. S. ;
Winkelnkemper, H. E. .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2016, 22 (01) :251-261
[10]   Algebraic characterization of simple closed curves via Turaev's cobracket [J].
Chas, Moira ;
Krongold, Fabiana .
JOURNAL OF TOPOLOGY, 2016, 9 (01) :91-104