Gallium-doped tungsten trioxide thin film photoelectrodes for photoelectrochemical water splitting
被引:43
作者:
Kim Hang Ng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Fuel Cell Inst, Ukm Bangi 43600, Selangor, Malaysia
Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Chem Sci & Food Technol, Ukm Bangi 43600, Selangor, MalaysiaUniv Kebangsaan Malaysia, Fuel Cell Inst, Ukm Bangi 43600, Selangor, Malaysia
Kim Hang Ng
[1
,2
]
Minggu, Lorna Jeffery
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Fuel Cell Inst, Ukm Bangi 43600, Selangor, MalaysiaUniv Kebangsaan Malaysia, Fuel Cell Inst, Ukm Bangi 43600, Selangor, Malaysia
Minggu, Lorna Jeffery
[1
]
Kassim, Mohammad B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Fuel Cell Inst, Ukm Bangi 43600, Selangor, Malaysia
Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Chem Sci & Food Technol, Ukm Bangi 43600, Selangor, MalaysiaUniv Kebangsaan Malaysia, Fuel Cell Inst, Ukm Bangi 43600, Selangor, Malaysia
Kassim, Mohammad B.
[1
,2
]
机构:
[1] Univ Kebangsaan Malaysia, Fuel Cell Inst, Ukm Bangi 43600, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Chem Sci & Food Technol, Ukm Bangi 43600, Selangor, Malaysia
A sol-gel method was used to synthesise different compositions of Ga-doped tungsten trioxide thin films using tungstic acid and gallium(III) nitrate as starting materials. The precursor solutions were drop-casted on FTO glass and annealed at 500 degrees C for 30 min, and the resulting materials were characterised with SEM, XRD, UV/Vis spectrophotometry and photoelectrochemical analysis. The Ga-doped WO3 samples exhibited a greater grain than undoped WO3, and a monoclinic structure was observed for all WO3 samples. The band gap reduction of WO3 from 2.74 to 2.60 eV indicated the red-shift of light absorption towards the visible light region in the solar spectrum. The donor carrier density for the doped WO3 increased, and the conduction band edge position exhibited a positive shift. The photoactivity of WO3 increased threefold when the photoanode was 20% doped with gallium. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.