High temperature recovery of radiation defects in tungsten and its effect on deuterium retention

被引:20
作者
Zibrov, M. [1 ]
Duerbeck, T. [1 ]
Egger, W. [2 ]
Mayer, M. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[2] Univ Bundeswehr Munchen, Inst Angew Phys & Messtech, D-85577 Neubiberg, Germany
关键词
Tungsten; Radiation defects; Ion irradiation; Annealing; Deuterium retention; Positron annihilation spectroscopy; THERMAL-DESORPTION; NUCLEAR-REACTION; INDUCED DAMAGE; IRRADIATION; SIMULATIONS; HYDROGEN; BEHAVIOR; ENERGY; VOIDS;
D O I
10.1016/j.nme.2020.100747
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The recovery of radiation defects in tungsten (W) due to post-irradiation isochronal (15 min) annealing at temperatures in the range of 1600-2100 K has been investigated. The defects were introduced in W (100) single crystals by irradiation with 9 MeV W ions to a maximum damage level of 1.1 dpa at 290 K. Vacancies and vacancy clusters in the samples were examined using positron annihilation lifetime spectroscopy. The defects were decorated with deuterium (D) by exposing the annealed samples to a low-flux (10(20)D/(m(2)s)), low-energy (10 eV/D) D plasma at a temperature of 450 K. The D concentration profiles in the samples were measured by D(He-3, p)alpha nuclear reaction analysis and the D binding states in the defects were identified by thermal desorption spectroscopy. Annealing at 1600-1900 K resulted in the presence of mainly large vacancy clusters which gave rise to a single desorption peak near 600 K. The trapped D concentration in the sample annealed at 1600 K was 15% of that in the as-irradiated sample and decreased to 4% in the sample annealed at 1900 K. Annealing at 2000 K resulted in the complete recovery of radiation defects.
引用
收藏
页数:6
相关论文
共 47 条
[1]  
[Anonymous], 2016, ASTM: E521-16, V12, DOI [10.1520/E0521-16, DOI 10.1520/E0521-16]
[2]   Pulsed low-energy positron beams in materials sciences [J].
Egger, W. .
PHYSICS WITH MANY POSITRONS, 2010, 174 :419-449
[3]   VOID GROWTH AND THERMAL-DESORPTION OF DEUTERIUM FROM VOIDS IN TUNGSTEN [J].
ELEVELD, H ;
VANVEEN, A .
JOURNAL OF NUCLEAR MATERIALS, 1994, 212 :1421-1425
[4]  
Eleveld H., 1996, THESIS
[5]   European DEMO design strategy and consequences for materials [J].
Federici, G. ;
Biel, W. ;
Gilbert, M. R. ;
Kemp, R. ;
Taylor, N. ;
Wenninger, R. .
NUCLEAR FUSION, 2017, 57 (09)
[6]   High temperature annealing of ion irradiated tungsten [J].
Ferroni, Francesco ;
Yi, Xiaoou ;
Arakawa, Kazuto ;
Fitzgerald, Steven P. ;
Edmondson, Philip D. ;
Roberts, Steve G. .
ACTA MATERIALIA, 2015, 90 :380-393
[7]   Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials [J].
Gilbert, M. R. ;
Dudarev, S. L. ;
Nguyen-Manh, D. ;
Zheng, S. ;
Packer, L. W. ;
Sublet, J. -Ch. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 442 (1-3) :S755-S760
[8]   INFLUENCE OF THE CRYSTALLIZATION CONDITIONS ON THE STRUCTURAL PERFECTION OF MOLYBDENUM AND TUNGSTEN SINGLE-CRYSTALS [J].
GLEBOVSKY, VG ;
SEMENOV, VN ;
LOMEYKO, VV .
JOURNAL OF CRYSTAL GROWTH, 1988, 87 (01) :142-150
[9]   Deuterium trapping at defects created with neutron and ion irradiations in tungsten [J].
Hatano, Y. ;
Shimada, M. ;
Otsuka, T. ;
Oya, Y. ;
Alimov, V. Kh. ;
Hara, M. ;
Shi, J. ;
Kobayashi, M. ;
Oda, T. ;
Cao, G. ;
Okuno, K. ;
Tanaka, T. ;
Sugiyama, K. ;
Roth, J. ;
Tyburska-Pueschel, B. ;
Dorner, J. ;
Yoshida, N. ;
Futagami, N. ;
Watanabe, H. ;
Hatakeyama, M. ;
Kurishita, H. ;
Sokolov, M. ;
Katoh, Y. .
NUCLEAR FUSION, 2013, 53 (07)
[10]   Direct observation of mono-vacancy and self-interstitial recovery in tungsten [J].
Heikinheimo, J. ;
Mizohata, K. ;
Raisanen, J. ;
Ahlgren, T. ;
Jalkanen, P. ;
Lahtinen, A. ;
Catarino, N. ;
Alves, E. ;
Tuomisto, F. .
APL MATERIALS, 2019, 7 (02)