Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

被引:506
作者
Mai-Prochnow, Anne [1 ]
Clauson, Maryse [1 ,2 ]
Hong, Jungmi [1 ,3 ]
Murphy, Anthony B. [1 ]
机构
[1] CSIRO Mfg, POB 218, Lindfield, NSW 2070, Australia
[2] Natl Engn Sch Agron & Food Sci, Nancy, France
[3] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
关键词
ATMOSPHERIC-PRESSURE PLASMA; SHOW ENHANCED RESISTANCE; STAPHYLOCOCCUS-EPIDERMIDIS; PSEUDOMONAS-AERUGINOSA; LISTERIA-MONOCYTOGENES; BIOFILMS; SUSCEPTIBILITY; MICROORGANISMS; STERILIZATION; DESTRUCTION;
D O I
10.1038/srep38610
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log(10) reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.
引用
收藏
页数:11
相关论文
共 50 条
[1]   The biofilm matrix [J].
Flemming, Hans-Curt ;
Wingender, Jost .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (09) :623-633
[2]  
Boles BR, 2004, P NATL ACAD SCI USA, V101, P16630, DOI 10.1073/pnas.0407460101
[3]   Biofilms:: the matrix revisited [J].
Branda, SS ;
Vik, Å ;
Friedman, L ;
Kolter, R .
TRENDS IN MICROBIOLOGY, 2005, 13 (01) :20-26
[4]   Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections [J].
Burmolle, Mette ;
Thomsen, Trine Rolighed ;
Fazli, Mustafa ;
Dige, Irene ;
Christensen, Lise ;
Homoe, Preben ;
Tvede, Michael ;
Nyvad, Bente ;
Tolker-Nielsen, Tim ;
Givskov, Michael ;
Moser, Claus ;
Kirketerp-Moller, Klaus ;
Johansen, Helle Krogh ;
Hoiby, Niels ;
Jensen, Peter Ostrup ;
Sorensen, Soren J. ;
Bjarnsholt, Thomas .
FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY, 2010, 59 (03) :324-336
[5]  
Bussiahn R., 2012, PLASM SCI ICOPS 2012
[6]   A 6 x 6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli [J].
Chen, CY ;
Nace, GW ;
Irwin, PL .
JOURNAL OF MICROBIOLOGICAL METHODS, 2003, 55 (02) :475-479
[7]   Role of Mutation in Pseudomonas aeruginosa Biofilm Development [J].
Conibear, Tim C. R. ;
Collins, Samuel L. ;
Webb, Jeremy S. .
PLOS ONE, 2009, 4 (07)
[8]   Bacterial biofilms: A common cause of persistent infections [J].
Costerton, JW ;
Stewart, PS ;
Greenberg, EP .
SCIENCE, 1999, 284 (5418) :1318-1322
[9]   ELECTRON-MICROSCOPIC APPEARANCE OF SILVER SULFADIAZINE-TREATED ENTEROBACTER-CLOACAE [J].
COWARD, JE ;
ROSENKRANZ, HS .
CHEMOTHERAPY, 1975, 21 (3-4) :231-235
[10]   Effect of Atmospheric-Pressure Cold Plasma on Pathogenic Oral Biofilms and In Vitro Reconstituted Oral Epithelium [J].
Delben, Juliana Aparecida ;
Zago, Chaiene Evelin ;
Tyhovych, Natalia ;
Duarte, Simone ;
Vergani, Carlos Eduardo .
PLOS ONE, 2016, 11 (05)