On bi-conservative surfaces in Minkowski 3-space

被引:25
|
作者
Fu, Yu [1 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Math & Quantitat Econ, Dalian 116025, Peoples R China
关键词
Surfaces of revolution; Bi-conservative surfaces; Null scrolls; BIHARMONIC SUBMANIFOLDS; HYPERSURFACES; MAPS;
D O I
10.1016/j.geomphys.2013.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
R. Caddeo et al. introduced the notion of bi-conservative submanifolds. By definition, such submanifolds have free divergence bi-tensor field, i.e. div S-2 = 0, which is a generalization of biharmonic submanifolds. This work is done by proving that bi-conservative surfaces in the 3-dimensional Minkowski space are locally CMC surfaces, revolution of surfaces or null scrolls. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [21] Bifurcations of robust features on surfaces in the Minkowski 3-space
    Fernandes, Marco Antonio do Couto
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 93
  • [22] Timelike Circular Surfaces and Singularities in Minkowski 3-Space
    Li, Yanlin
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    SYMMETRY-BASEL, 2022, 14 (09):
  • [24] Entire surfaces of constant curvature in Minkowski 3-space
    Bonsante, Francesco
    Seppi, Andrea
    Smillie, Peter
    MATHEMATISCHE ANNALEN, 2019, 374 (3-4) : 1261 - 1309
  • [25] Some classification of surfaces of revolution in Minkowski 3-space
    Choi, Miekyung
    Kim, Young
    Yoon, Dae
    JOURNAL OF GEOMETRY, 2013, 104 (01) : 85 - 106
  • [26] New Types of Canal Surfaces in Minkowski 3-Space
    Ucum, Ali
    Ilarslan, Kazim
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 449 - 468
  • [27] Structure and characterization of ruled surfaces in Minkowski 3-space
    Guler, Fatma
    Kasap, Emin
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2016, 14 (02) : 155 - 164
  • [28] RULED SURFACES IN LORENTZ-MINKOWSKI 3-SPACE
    Manhart, Friedrich
    INTERNATIONAL WORKSHOP ON LINE GEOMETRY & KINEMATICS, IW - LGK - 11, 2011, : 63 - 70
  • [29] Spacelike Sweeping Surfaces and Singularities in Minkowski 3-Space
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    Alluhaibi, Nadia
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [30] ON THE SECOND KIND TWISTED SURFACES IN MINKOWSKI 3-SPACE
    Grbovic, Milica
    Nesovic, Emilija
    Pantic, Anica
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2015, 8 (02): : 9 - 20