On bi-conservative surfaces in Minkowski 3-space

被引:25
作者
Fu, Yu [1 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Math & Quantitat Econ, Dalian 116025, Peoples R China
关键词
Surfaces of revolution; Bi-conservative surfaces; Null scrolls; BIHARMONIC SUBMANIFOLDS; HYPERSURFACES; MAPS;
D O I
10.1016/j.geomphys.2013.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
R. Caddeo et al. introduced the notion of bi-conservative submanifolds. By definition, such submanifolds have free divergence bi-tensor field, i.e. div S-2 = 0, which is a generalization of biharmonic submanifolds. This work is done by proving that bi-conservative surfaces in the 3-dimensional Minkowski space are locally CMC surfaces, revolution of surfaces or null scrolls. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 28 条
  • [11] Null scrolls as solutions of a sigma model
    Barros, Manuel
    Ferrandez, Angel
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (14)
  • [12] Biharmonic submanifolds of S3
    Caddeo, R
    Montaldo, S
    Oniciuc, C
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (08) : 867 - 876
  • [13] Biharmonic submanifolds in spheres
    Caddeo, R
    Montaldo, S
    Oniciuc, C
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2002, 130 (1) : 109 - 123
  • [14] Chen B.-Y., 1991, Soochow J. Math., V17, P169
  • [15] Chen B.-Y., 1973, PURE APPL MATH, V22
  • [16] Chen B.-Y., 2011, Pseudo-Riemannian geometry, -invariants and applications
  • [17] Clelland JN, 2012, ASIAN J MATH, V16, P189
  • [18] Defever F, 1998, MATH NACHR, V196, P61
  • [19] Dimitric I. M., 1992, Bull. Inst. Math. Acad. Sinica, V20, P53
  • [20] SURFACES OF REVOLUTION WITH CONSTANT MEAN-CURVATURE IN LORENTZ-MINKOWSKI SPACE
    HANO, J
    NOMIZU, K
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1984, 36 (03) : 427 - 437