On bi-conservative surfaces in Minkowski 3-space

被引:25
|
作者
Fu, Yu [1 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Math & Quantitat Econ, Dalian 116025, Peoples R China
关键词
Surfaces of revolution; Bi-conservative surfaces; Null scrolls; BIHARMONIC SUBMANIFOLDS; HYPERSURFACES; MAPS;
D O I
10.1016/j.geomphys.2013.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
R. Caddeo et al. introduced the notion of bi-conservative submanifolds. By definition, such submanifolds have free divergence bi-tensor field, i.e. div S-2 = 0, which is a generalization of biharmonic submanifolds. This work is done by proving that bi-conservative surfaces in the 3-dimensional Minkowski space are locally CMC surfaces, revolution of surfaces or null scrolls. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [1] CAUSTICS OF SURFACES IN THE MINKOWSKI 3-SPACE
    Tari, Farid
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (01): : 189 - 209
  • [2] LIGHTLIKE SURFACES IN MINKOWSKI 3-SPACE
    Inoguchi, Jun-Ichi
    Lee, Sungwook
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (02) : 267 - 283
  • [3] ON PARALLEL SURFACES IN MINKOWSKI 3-SPACE
    Unluturk, Yasin
    Ozusaglam, Erdal
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2013, 3 (02): : 214 - 222
  • [4] Umbilics of surfaces in the Minkowski 3-space
    Tari, Farid
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2013, 65 (03) : 723 - 731
  • [5] Geometry of Hasimoto Surfaces in Minkowski 3-Space
    Erdogdu, Melek
    Ozdemir, Mustafa
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (1-2) : 169 - 181
  • [6] Geometry of Hasimoto Surfaces in Minkowski 3-Space
    Melek Erdoğdu
    Mustafa Özdemir
    Mathematical Physics, Analysis and Geometry, 2014, 17 : 169 - 181
  • [7] Ruled Weingarten surfaces in Minkowski 3-space
    Dillen, F
    Kühnel, W
    MANUSCRIPTA MATHEMATICA, 1999, 98 (03) : 307 - 320
  • [8] Surfaces with common geodesic in Minkowski 3-space
    Kasap, Emin
    Akyildiz, F. Talay
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) : 260 - 270
  • [9] Spacelike Circular Surfaces in Minkowski 3-Space
    Li, Yanlin
    Aldossary, Maryam T.
    Abdel-Baky, Rashad A.
    SYMMETRY-BASEL, 2023, 15 (01):
  • [10] TIMELIKE SURFACES OF EVOLUTION IN MINKOWSKI 3-SPACE
    Yavuz, Yunus
    Yazla, Aziz
    Sariaydin, Muhammed T.
    JOURNAL OF SCIENCE AND ARTS, 2020, (03): : 611 - 626