Low-temperature anodic oxidation of silicon using a wave resonance plasma source

被引:6
作者
Uchikoga, S
Lai, DF
Robertson, J
Milne, WI
Hatzopoulos, N
Yankov, RA
Weiler, M
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] CCR GmbH, D-53619 Rheinbreitbach, Germany
关键词
D O I
10.1063/1.124494
中图分类号
O59 [应用物理学];
学科分类号
摘要
A rf wave resonance plasma (WARP) source has been used to plasma oxidize Si at temperatures below 100 degrees C. Oxidation under positive substrate bias in constant current mode gives an oxidation rate of 1-8 nm/min for current densities of 0.4-5.5 mA/cm(2). This corresponds to an ionic (O-) current of about 10% of the total current, which is 2-5 times higher than previously reported, due to the high plasma density of 10(12)-10(13) cm(-3) achieved by the WARP source. The breakdown field of similar to 10 MV/cm and the etch rate of 60 nm/min of the oxide are independent of the oxidation rate and similar to those of the thermal oxide. Results from capacitance-voltage measurements, Fourier transform infrared absorbance spectroscopy, null ellipsometry, and Rutherford backscattering spectroscopy suggest that the oxide grown at low rates (< 2 nm/min) is very close to stoichiometric SiO2 while the oxide grown at high rates (> 3 nm/min) is Si rich (35%-40% atomic Si). (C) 1999 American Institute of Physics. [S0003-6951(99)02930-7].
引用
收藏
页码:725 / 727
页数:3
相关论文
共 50 条
[31]   Low-temperature oxidation of silicon using UV-light-excited ozone [J].
Tosaka, A ;
Nishiguchi, T ;
Nonaka, H ;
Ichimura, S .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2005, 44 (33-36) :L1144-L1146
[32]   Low-temperature oxidation of silicon using UV-light-excited ozone [J].
Tosaka, A. (aki.tosaka@aist.go.jp), 1600, Japan Society of Applied Physics (44) :33-36
[33]   Low-temperature anodic bonding of silicon to silicon wafers by means of intermediate glass layers [J].
A. Gerlach ;
D. Maas ;
D. Seidel ;
H. Bartuch ;
S. Schundau ;
K. Kaschlik .
Microsystem Technologies, 1999, 5 :144-149
[34]   RESONANCE IN LOW-TEMPERATURE OXIDATION WAVES FOR POROUS MEDIA [J].
Mailybaev, A. A. ;
Marchesin, D. ;
Bruining, J. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (05) :2230-2252
[35]   OPTIMIZATION OF ANODIC SILICON-OXIDE FILMS FOR LOW-TEMPERATURE PASSIVATION OF SILICON SURFACES [J].
MENDE, G ;
FLIETNER, H ;
DEUTSCHER, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (01) :188-194
[36]   SOME ASPECTS OF LOW-TEMPERATURE AND ANODIC-OXIDATION OF METALS AND SEMICONDUCTORS [J].
VIJH, AK .
OXIDATION OF METALS, 1972, 4 (02) :63-&
[37]   Low-temperature anodic bonding of silicon to silicon wafers by means of intermediate glass layers [J].
Gerlach, A ;
Maas, D ;
Seidel, D ;
Bartuch, H ;
Schundau, S ;
Kaschlik, K .
MICROSYSTEM TECHNOLOGIES, 1999, 5 (03) :144-149
[38]   LOW-TEMPERATURE FORMATION OF INSULATING LAYERS ON SILICIDES BY ANODIC-OXIDATION [J].
STRYDOM, WJ ;
LOMBAARD, JC ;
PRETORIUS, R .
SOLID-STATE ELECTRONICS, 1987, 30 (09) :947-951
[39]   LOW-TEMPERATURE SILICON-TO-SILICON ANODIC BONDING WITH INTERMEDIATE LOW MELTING-POINT GLASS [J].
ESASHI, M ;
NAKANO, A ;
SHOJI, S ;
HEBIGUCHI, H .
SENSORS AND ACTUATORS A-PHYSICAL, 1990, 23 (1-3) :931-934
[40]   Low-temperature MEMS process using plasma activated silicon-on-silicon (SOS) bonding [J].
Galchev, Tzeno ;
Welch, Warren C., III ;
Najafi, Khalil .
PROCEEDINGS OF THE IEEE TWENTIETH ANNUAL INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, VOLS 1 AND 2, 2007, :402-405