Low-temperature anodic oxidation of silicon using a wave resonance plasma source

被引:6
作者
Uchikoga, S
Lai, DF
Robertson, J
Milne, WI
Hatzopoulos, N
Yankov, RA
Weiler, M
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] CCR GmbH, D-53619 Rheinbreitbach, Germany
关键词
D O I
10.1063/1.124494
中图分类号
O59 [应用物理学];
学科分类号
摘要
A rf wave resonance plasma (WARP) source has been used to plasma oxidize Si at temperatures below 100 degrees C. Oxidation under positive substrate bias in constant current mode gives an oxidation rate of 1-8 nm/min for current densities of 0.4-5.5 mA/cm(2). This corresponds to an ionic (O-) current of about 10% of the total current, which is 2-5 times higher than previously reported, due to the high plasma density of 10(12)-10(13) cm(-3) achieved by the WARP source. The breakdown field of similar to 10 MV/cm and the etch rate of 60 nm/min of the oxide are independent of the oxidation rate and similar to those of the thermal oxide. Results from capacitance-voltage measurements, Fourier transform infrared absorbance spectroscopy, null ellipsometry, and Rutherford backscattering spectroscopy suggest that the oxide grown at low rates (< 2 nm/min) is very close to stoichiometric SiO2 while the oxide grown at high rates (> 3 nm/min) is Si rich (35%-40% atomic Si). (C) 1999 American Institute of Physics. [S0003-6951(99)02930-7].
引用
收藏
页码:725 / 727
页数:3
相关论文
共 50 条
[21]   LOW-TEMPERATURE THERMAL-OXIDATION OF SILICON [J].
UCHIDA, Y ;
YUE, J ;
KAMASE, F ;
SUZUKI, T ;
HATTORI, T ;
MATSUMURA, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1986, 25 (11) :1633-1639
[22]   LOW-TEMPERATURE OXIDATION OF CRYSTALLINE SILICON USING EXCIMER LASER IRRADIATION [J].
NAYAR, V ;
BOYD, IW ;
GOODALL, FN ;
ARTHUR, G .
APPLIED SURFACE SCIENCE, 1989, 36 (1-4) :134-140
[23]   THE LOW-TEMPERATURE ANODIZATION OF SILICON IN A GASEOUS PLASMA [J].
BARLOW, KJ ;
TAYLOR, S ;
ECCLESTON, W ;
KIERMASZ, A .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1989, 36 (07) :1279-1285
[24]   Low-temperature plasma oxidation of activated carbons [J].
Schukin, LI ;
Kornievich, MV ;
Vartapetjan, RS ;
Beznisko, SI .
CARBON, 2002, 40 (11) :2028-2030
[25]   A Source of Low-Temperature Nonequilibrium Argon Plasma [J].
A. P. Semenov ;
B. B. Baldanov ;
Ts. V. Ranzhurov .
Instruments and Experimental Techniques, 2019, 62 :432-435
[26]   A Source of Low-Temperature Nonequilibrium Argon Plasma [J].
Semenov, A. P. ;
Baldanov, B. B. ;
Ranzhurov, Ts. V. .
INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2019, 62 (03) :432-435
[27]   ELECTRIC ARC SOURCE OF A LOW-TEMPERATURE PLASMA [J].
BERTINOV, AI ;
BUT, DA ;
VASYUKEVICH, PV ;
POPOV, VV ;
TSARKOV, VD .
HIGH TEMPERATURE, 1968, 6 (03) :511-+
[28]   Low-Temperature Silicon-to-Silicon Anodic Bonding Using Sodium-Rich Glass for MEMS Applications [J].
Tiwari, Ruchi ;
Chandra, Sudhir .
JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (02) :555-566
[29]   Low-Temperature Silicon-to-Silicon Anodic Bonding Using Sodium-Rich Glass for MEMS Applications [J].
Ruchi Tiwari ;
Sudhir Chandra .
Journal of Electronic Materials, 2014, 43 :555-566
[30]   LOW-TEMPERATURE PHOTO-ASSISTED OXIDATION OF SILICON [J].
KAZOR, A ;
BOYD, IW .
APPLIED SURFACE SCIENCE, 1992, 54 :460-464