General fractional Sobolev space with variable exponent and applications to nonlocal problems

被引:21
作者
Azroul, Elhoussine [1 ]
Benkirane, Abdelmoujib [1 ]
Shimi, Mohammed [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Lab Math Anal & Applicat, Fes, Morocco
关键词
Generalized fractional Sobolev spaces; Nonlocal and integro-differential operators; p(x; )-Kirchhoff type problems; Mountain pass theorem; Minty-Browder theorem;
D O I
10.1007/s43036-020-00062-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend the fractional Sobolev spaces with variable exponents W-s,W-p(x,W-y) to include the general fractional case W-K(s,p(x,y)), where p is a variable exponent, s is an element of (0, 1) and K is a suitable kernel. We are concerned with some qualitative properties of the space W-K(s,p(x,y)) (completeness, reflexivity, separability, and density). Moreover, we prove a continuous and a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As applications, we discuss the existence of a nontrivial solution for a nonlocal p(x, .)-Kirchhoff type problem. Further, we establish the existence and uniqueness of a solution for a variational problem involving the integro-differential operator of elliptic type L-K(p(x,.)).
引用
收藏
页码:1512 / 1540
页数:29
相关论文
共 25 条
[1]   Existence and multiplicity of solutions for a p(x)-Kirchhoff type equation [J].
Afrouzi, G. A. ;
Mirzapour, M. ;
Chung, N. T. .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 136 :95-109
[2]  
Afrouzi GA, 2013, ELECTRON J DIFFER EQ
[3]   On a class of fractional p(x) -Kirchhoff type problems [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. ;
Srati, M. .
APPLICABLE ANALYSIS, 2021, 100 (02) :383-402
[4]   Existence and multiplicity of solutions for fractional p(x, .)-Kirchhoff-type problems in RN [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. .
APPLICABLE ANALYSIS, 2021, 100 (09) :2029-2048
[5]   EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. .
ADVANCES IN OPERATOR THEORY, 2019, 4 (02) :539-555
[6]  
Baalal A., 2018, INT J MATH ANAL, V12, P85
[7]   ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03) :379-389
[8]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[9]   On a class of fractional systems with nonstandard growth conditions [J].
Boumazourh, Athmane ;
Azroul, Elhoussine .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (02) :805-820
[10]  
Brezis H., 1999, Analyse Fonctionnelle: ThEorie Et Applications