Frequency of Sobolev and quasiconformal dimension distortion

被引:13
作者
Balogh, Zoltan M. [1 ]
Monti, Roberto [2 ]
Tyson, Jeremy T. [3 ]
机构
[1] Univ Bern, Math Inst, CH-3012 Bern, Switzerland
[2] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2013年 / 99卷 / 02期
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
Hausdorff dimension; Sobolev mapping; Potential theory; Quasiconformal mapping; Space-filling mapping; HAUSDORFF DIMENSION; EXCEPTIONAL SETS; MAPPINGS; SPACES; DERIVATIVES; CAPACITIES; BOUNDARY; FRACTALS; DENSITY;
D O I
10.1016/j.matpur.2012.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Hausdorff and Minkowski dimension distortion for images of generic affine subspaces of Euclidean space under Sobolev and quasiconformal maps. For a supercritical Sobolev map f defined on a domain in R-n, we estimate from above the Hausdorff dimension of the set of affine subspaces parallel to a fixed in-dimensional linear subspace, whose image under f has positive H-alpha measure for some fixed alpha > m. As a consequence, we obtain new dimension distortion and absolute continuity statements valid for almost every affine subspace. Our results hold for mappings taking values in arbitrary metric spaces, yet are new even for quasiconformal maps of the plane. We illustrate our results with numerous examples. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:125 / 149
页数:25
相关论文
共 49 条
[1]  
Ambrosio L., 1990, ANN SCUOLA NORM SU S, V17, P439
[2]  
[Anonymous], 1989, GRAD TEXTS MATH
[3]   AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS [J].
ASTALA, K .
ACTA MATHEMATICA, 1994, 173 (01) :37-60
[4]  
Astala K, 2002, ANN SCUOLA NORM-SCI, V1, P687
[5]   Hausdorff dimensions of self-similar and self-affine fractals in the Heisenberg group [J].
Balogh, ZM ;
Tyson, JT .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :153-183
[6]   Exceptional sets for self-similar fractals in Carnot groups [J].
Balogh, Zoltan M. ;
Berger, Reto ;
Monti, Roberto ;
Tyson, Jeremy T. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 :147-172
[7]   Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups [J].
Balogh, Zoltan M. ;
Tyson, Jeremy T. ;
Warhurst, Ben .
ADVANCES IN MATHEMATICS, 2009, 220 (02) :560-619
[8]   A quasisymmetric surface with no rectifiable curves [J].
Bishop, CJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) :2035-2040
[9]   Smooth quasiregular mappings with branching [J].
Bonk, X ;
Heinonen, J .
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 100, 2004, 100 (1) :153-170
[10]   AT THE BOUNDARY OF SOME HYPERBOLIC POLYHEDRA [J].
BOURDON, M .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (01) :119-141