Hybrid Printed Energy Harvesting Technology for Self-Sustainable Autonomous Sensor Application

被引:16
作者
Kim, Sangkil [1 ]
Tentzeris, Manos M. [2 ]
Georgiadis, Apostolos [3 ]
机构
[1] Pusan Natl Univ, Dept Elect Engn, Busan 46241, South Korea
[2] Georgia Inst Technol, Dept Elect & Comp Engn, 777 Atlantic Dr NW, Atlanta, GA 30332 USA
[3] Heriot Watt Univ, Edinburgh Campus, Edinburgh EH14 4AS, Midlothian, Scotland
来源
SENSORS | 2019年 / 19卷 / 03期
关键词
inkjet printing; hybrid printed electronics; energy harvesting; self-sustainable wireless sensor; INTERNET;
D O I
10.3390/s19030728
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, the far-field energy harvesting system for self-sustainable wireless autonomous sensor application is presented. The proposed autonomous sensor system consists of a wireless power supplier (active antenna) and far-field energy harvesting technology-enabled autonomous battery-less sensors. The wireless power supplier converts solar power to electromagnetic power in order to transfer power to multiple autonomous sensors wirelessly. The autonomous sensors have far-field energy harvesters which convert transmitted RF power to voltage regulated DC power to power-on the sensor system. The hybrid printing technology was chosen to build the autonomous sensors and the wireless power suppliers. Two popular hybrid electronics technologies (direct nano-particle printing and indirect copper thin film printing techniques) are discussed in detail.
引用
收藏
页数:9
相关论文
共 18 条
[1]   Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites - A review [J].
Agate, Sachin ;
Joyce, Michael ;
Lucia, Lucian ;
Pal, Lokendra .
CARBOHYDRATE POLYMERS, 2018, 198 :249-260
[2]   Internet of Hybrid Energy Harvesting Things [J].
Akan, Ozgur B. ;
Cetinkaya, Oktay ;
Koca, Caglar ;
Ozger, Mustafa .
IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (02) :736-746
[3]   Tunneling RFID Tags for Long-Range and Low-Power Microwave Applications [J].
Amato, Francesco ;
Peterson, Christopher W. ;
Degnan, Brian P. ;
Durgin, Gregory D. .
IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, 2018, 2 (02) :93-103
[4]   A Low-Cost Snap-Through-Buckling Inkjet-Printed Device for Vibrational Energy Harvesting [J].
Ando, Bruno ;
Baglio, Salvatore ;
Bulsara, Adi R. ;
Marletta, Vincenzo ;
Ferrari, Vittorio ;
Ferrari, Marco .
IEEE SENSORS JOURNAL, 2015, 15 (06) :3209-3220
[5]   Organic materials for printed electronics [J].
Berggren, M. ;
Nilsson, D. ;
Robinson, N. D. .
NATURE MATERIALS, 2007, 6 (01) :3-5
[6]   Inkjet printing of well-defined polymer dots and arrays [J].
de Gans, BJ ;
Schubert, US .
LANGMUIR, 2004, 20 (18) :7789-7793
[7]   Design of a slotted chipless RFID humidity sensor [J].
Deng, Fangming ;
He, Yigang ;
Li, Bing ;
Song, Yang ;
Wu, Xiang .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 264 :255-262
[8]   Wireless Energy Transfer Powered Wireless Sensor Node for Green IoT: Design, Implementation and Evaluation [J].
Janhunen, Janne ;
Mikhaylov, Konstantin ;
Petajajarvi, Juha ;
Sonkki, Marko .
SENSORS, 2019, 19 (01)
[9]   Wireless Energy Harvesting for the Internet of Things [J].
Kamalinejad, Pouya ;
Mahapatra, Chinmaya ;
Sheng, Zhengguo ;
Mirabbasi, Shahriar ;
Leung, Victor C. M. ;
Guan, Yong Liang .
IEEE COMMUNICATIONS MAGAZINE, 2015, 53 (06) :102-108
[10]   A flexible RF energy harvester using a hybrid printing technology for 'stand-alone' wireless sensor platforms [J].
Kim, Sangkil ;
Jeong, Soyeon ;
Bito, Jo ;
Georgiadis, Apostolos ;
Tentzeris, Manos M. .
FLEXIBLE AND PRINTED ELECTRONICS, 2018, 3 (01)