REPRESENTATIONS OF INTEGERS BY THE FORM x2 + xy + y2 + z2 + zt + t2

被引:5
作者
Chapman, Robin [1 ]
机构
[1] Univ Bristol, Dept Math, Royal Ft Annexe, Bristol BS8 1TW, Avon, England
关键词
Quadratic forms; number of representations;
D O I
10.1142/S1793042108001638
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an elementary proof of the number of representations of an integer by the quaternary quadratic form x(2) + xy + y(2) + z(2) + zt + t(2).
引用
收藏
页码:709 / 714
页数:6
相关论文
共 6 条
  • [1] On the two-dimensional theta functions of the Borweins
    Alaca, Ayse
    Alaca, Saban
    Williams, Kenneth S.
    [J]. ACTA ARITHMETICA, 2006, 124 (02) : 177 - 195
  • [2] [Anonymous], 2000, FAR E J MATH SCI
  • [3] Huard JG, 2002, NUMBER THEORY FOR THE MILLENNIUM II, P229
  • [4] KAPLAN P, 1997, FAR E J MATH SCI, V5, P153
  • [5] Liouville J., 1863, J MATH6MATIQUES PURE, P141
  • [6] Lorenz, 1871, TIDSSKRIFT MATH, V1, P97