Rational maps with half symmetries, Julia sets, and Multibrot sets in parameter planes

被引:7
作者
Hu, Jun [1 ]
Jimenez, Francisco G. [1 ]
Muzician, Oleg [1 ]
机构
[1] CUNY Brooklyn Coll, Dept Math, Brooklyn, NY 11210 USA
来源
CONFORMAL DYNAMICS AND HYPERBOLIC GEOMETRY | 2012年 / 573卷
关键词
D O I
10.1090/conm/573/11393
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first work out formulas for nontrivial rational maps of minimal degree that are invariant under precompositions by the elements of finite Kleinian groups. In fact, up to precompositions and post-compositions by Mobius transformations, all formulas can be written as real-coefficient rational maps. Then using computer-generated pictures we explore the Julia sets of such maps in some one-parameter families and the Multibrot sets in the parameter planes, and we observe that the classifications of the Julia sets of the maps in these families have many similarities with the Julia sets of singularly perturbed rational maps studied by McMullen, and more extensively by Devaney and his collaborators.
引用
收藏
页码:119 / 146
页数:28
相关论文
共 10 条
  • [1] [Anonymous], CONT MATH
  • [2] [Anonymous], 1988, MATH SCI RES I PUBL
  • [3] A GENERALIZED VERSION OF THE MCMULLEN DOMAIN
    Blanchard, Paul
    Devaney, Robert L.
    Garijo, Antonio
    Russell, Elizabeth D.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (08): : 2309 - 2318
  • [4] Devaney R.L., 2006, TOPOLOGY P, V30, P163
  • [5] The escape trichotomy for singularly perturbed rational maps
    Devaney, RL
    Look, DM
    Uminsky, D
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (06) : 1621 - 1634
  • [6] Buried Sierpinski curve Julia sets
    Devaney, RL
    Look, DM
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (04) : 1035 - 1046
  • [7] Devaney RL, 2008, P AM MATH SOC, V136, P981
  • [8] SOLVING THE QUINTIC BY ITERATION
    DOYLE, P
    MCMULLEN, C
    [J]. ACTA MATHEMATICA, 1989, 163 (3-4) : 151 - 180
  • [9] Farkas H. M., 1980, RIEMANN SURFACES, DOI [10.1007/978-1-4612-2034-3, DOI 10.1007/978-1-4612-2034-3]
  • [10] Milnor J, 2000, DYNAMICS ONE COMPLEX