A modified feasible semi-smooth asymptotically Newton method for nonlinear complementarity problems

被引:0
作者
Ma, Changfeng [1 ]
Chen, Baoguo [1 ]
Pan, Shaojun [1 ]
机构
[1] Fuzhou Univ Int Studies & Trade, Res Ctr Sci Technol & Soc, Fuzhou 350202, Peoples R China
关键词
complementarity problems; asymptotically Newton method; global convergence; superlinear convergence; CONVERGENCE;
D O I
10.1186/s13660-016-1174-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a modified feasible semi-smooth asymptotically Newton method for nonlinear complementarity problems is proposed. The global convergence of the method and superlinear convergence are proved under some suitable assumptions. Numerical experiments are included to highlight the efficacy of the modified algorithm.
引用
收藏
页数:13
相关论文
共 14 条
[1]   A regularization semismooth Newton method based on the generalized Fischer-Burmeister function for P0-NCPs [J].
Chen, Jein-Shan ;
Pan, Shaohua .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) :464-479
[2]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[3]  
Facchinei Francisco, 2003, SPRINGER SERIES OPER
[4]   COMPUTATIONAL COMPLEXITY OF LCPS ASSOCIATED WITH POSITIVE DEFINITE SYMMETRIC MATRICES [J].
FATHI, Y .
MATHEMATICAL PROGRAMMING, 1979, 17 (03) :335-344
[5]   Feasible descent algorithms for mixed complementarity problems [J].
Ferris, MC ;
Kanzow, C ;
Munson, TS .
MATHEMATICAL PROGRAMMING, 1999, 86 (03) :475-497
[6]  
Hang JY, 2005, NONLINEAR COMPLEMENT
[7]   A new nonsmooth equations approach to nonlinear complementarity problems [J].
Jiang, HY ;
Qi, LQ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (01) :178-193
[8]  
Kanzow C, 2001, NUMER MATH, V89, P135, DOI 10.1007/s002110000254
[9]   Global convergence properties of some iterative methods for linear complementarity problems [J].
Kanzow, C .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) :326-341
[10]   A new smoothing and regularization Newton method for P 0-NCP [J].
Ma, Changfeng .
JOURNAL OF GLOBAL OPTIMIZATION, 2010, 48 (02) :241-261