An adaptive finite element splitting method for the incompressible Navier-Stokes equations

被引:11
作者
Selim, K. [1 ]
Logg, A. [1 ]
Larson, M. G. [2 ]
机构
[1] Simula Res Lab, N-1325 Lysaker, Norway
[2] Umea Univ, Dept Math, SE-90187 Umea, Sweden
关键词
Adaptive finite element method; A posteriori error estimate; Incompressible Navier-Stokes equations; Operator splitting method; A-POSTERIORI; GALERKIN METHODS; SCHEMES;
D O I
10.1016/j.cma.2011.10.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an adaptive finite element method for the incompressible Navier-Stokes equations based on a standard splitting scheme (the incremental pressure correction scheme). The presented method combines the efficiency and simplicity of a splitting method with the powerful framework offered by the finite element method for error analysis and adaptivity. An a posteriori error estimate is derived which expresses the error in a goal functional of interest as a sum of contributions from spatial discretization, time discretization and a term that measures the deviation of the splitting scheme from a pure Galerkin scheme (the computational error). Numerical examples are presented which demonstrate the performance of the adaptive algorithm and high quality efficiency indices. It is further demonstrated that the computational error of the Navier-Stokes momentum equation is linear in the size of the time step while the computational error of the continuity equation is quadratic in the size of the time step. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 25 条
[1]  
Bangerth W., 2003, LEC MATH
[2]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[3]  
Bengzon F., COMPUTATIONAL METHOD
[4]  
CBC, CBC SOLVE SOFTWARE P
[5]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[6]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .4. NONLINEAR PROBLEMS [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1729-1749
[7]  
Eriksson Kenneth, 1995, Acta Numerica, V4, P105, DOI [10.1017/S0962492900002531, DOI 10.1017/S0962492900002531, 10.1017/s0962492900002531]
[8]   An a posteriori - A priori analysis of multiscale operator splitting [J].
Estep, D. ;
Ginting, V. ;
Ropp, D. ;
Shadid, J. N. ;
Tavener, S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) :1116-1146
[9]  
Estep DJ, 2000, MEM AM MATH SOC, V146, P1
[10]  
*FENICS, FENICS SOFTW COLL