New perturbation algorithms for time-dependent quantum systems

被引:11
作者
Scherer, W
机构
[1] Inst. für Theoretische Physik A, TU Clausthal, 38678 Clausthal-Zellerfeld
关键词
D O I
10.1016/S0375-9601(97)00446-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The averaging method for time-dependent quantum systems is used to construct quantum mechanical analogues of the perturbation expansions by Poincare and by Kolmogorov for time-dependent operators. An example shows that the resulting two perturbation algorithms are much better than the usual time-dependent perturbation theory. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 10 条
[1]  
Kolmogorov A. N., 1954, Dokl. Akad. Nauk SSSR, V98, P527, DOI DOI 10.1007/BFB0021737
[2]  
Lichtenberg A.J., 1983, Regular and Stochastic Motion
[3]  
Poincare H., 1957, METHODES NOUVELLES M, VI
[4]   QUANTUM AVERAGING .1. POINCARE-VON ZEIPEL IS RAYLEIGH-SCHRODINGER [J].
SCHERER, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (24) :8231-8246
[5]   Quantum averaging .2. Kolmogorov's algorithm [J].
Scherer, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08) :2825-2851
[6]   SUPERCONVERGENT PERTURBATION METHOD IN QUANTUM-MECHANICS [J].
SCHERER, W .
PHYSICAL REVIEW LETTERS, 1995, 74 (09) :1495-1499
[7]  
SCHERER W, ASITPA1296
[8]  
SCHERER W, ASITPA1696
[9]  
Scherer W, 1996, THESIS TU CLAUSTHAL
[10]  
von Ziepel H, 1916, ARCH ASTRON MATH PHY, P11