共 40 条
Distributed fusion estimation with square-root array implementation for Markovian jump linear systems with random parameter matrices and cross-correlated noises
被引:28
作者:
Yang, Yanbo
[1
,2
]
Liang, Yan
[1
,2
]
Pan, Quan
[1
,2
]
Qin, Yuemei
[1
,2
]
Yang, Feng
[1
,2
]
机构:
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[2] Minist Educ, Key Lab Informat Fus Technol, Xian 710072, Peoples R China
基金:
美国国家科学基金会;
关键词:
Markovian jump systems;
Distributed fusion estimation;
Linear minimum mean square errorestimator;
Square-root array implementation;
Random parameter matrices;
Cross-correlated noises;
SLIDING MODE CONTROL;
NONLINEAR-SYSTEMS;
TARGET TRACKING;
H-INFINITY;
STOCHASTIC-SYSTEMS;
FILTER;
ALGORITHM;
CONSENSUS;
SENSORS;
DESIGN;
D O I:
10.1016/j.ins.2016.08.020
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
This study presents the distributed fusion estimation of discrete-time Markovian jump linear systems with random parameter matrices and cross-correlated noises in sensor networks. The recursive linear minimum mean square error estimator is proposed based on the Gram-Schmidt orthogonalization procedure under a centralized framework. In order to avoid the loss of positive semidefiniteness and reduce dynamical range, its square-root array implementation is presented by recursively triangularizing the square roots of relevant positive semidefinite matrices. Furthermore, via the information filter form, the distributed fusion estimation with square-root array implementation is derived from the centralized fusion structure, incorporated with consensus strategy. A maneuvering target tracking simulation in a sensor network validates the proposed method. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:446 / 462
页数:17
相关论文