Long-distance quantum key distribution with imperfect devices

被引:13
作者
Lo Piparo, Nicolo [1 ]
Razavi, Mohsen [1 ]
机构
[1] Univ Leeds, Sch Elect & Elect Engn, Leeds, W Yorkshire, England
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
ATOMIC ENSEMBLES; CRYPTOGRAPHY; REPEATERS; PROOF;
D O I
10.1103/PhysRevA.88.012332
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secret key generation rates per quantum memory. The two schemes under investigation are the one proposed by Duan et al. [Nature (London) 414, 413 (2001)] and that of Sangouard et al. [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfection in both protocols, such as nonzero double-photon probabilities at the sources, dark counts in detectors, and inefficiencies in the channel, photodetectors, and memories. We also consider memory decay and dephasing processes in our analysis. For the latter system, we determine the maximum value of the double-photon probability beyond which secret key distillation is not possible. We also find crossover distances for one nesting level to its subsequent one. We finally compare the two protocols in terms of their achievable secret key generation rates at their optimal settings. Our results specify regimes of operation where one system outperforms the other.
引用
收藏
页数:11
相关论文
共 34 条
[1]   Quantum repeaters and quantum key distribution: Analysis of secret-key rates [J].
Abruzzo, Silvestre ;
Bratzik, Sylvia ;
Bernardes, Nadja K. ;
Kampermann, Hermann ;
van Loock, Peter ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2013, 87 (05)
[2]   Multimode quantum memory based on atomic frequency combs [J].
Afzelius, Mikael ;
Simon, Christoph ;
de Riedmatten, Hugues ;
Gisin, Nicolas .
PHYSICAL REVIEW A, 2009, 79 (05)
[3]   Quantum key distribution over probabilistic quantum repeaters [J].
Amirloo, Jeyran ;
Razavi, Mohsen ;
Majedi, A. Hamed .
PHYSICAL REVIEW A, 2010, 82 (03)
[4]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[5]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[6]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[7]   Coherence measures for heralded single-photon sources [J].
Bocquillon, E. ;
Couteau, C. ;
Razavi, M. ;
Laflamme, R. ;
Weihs, G. .
PHYSICAL REVIEW A, 2009, 79 (03)
[8]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[9]   Fault-tolerant quantum repeater with atomic ensembles and linear optics [J].
Chen, Zeng-Bing ;
Zhao, Bo ;
Chen, Yu-Ao ;
Schmiedmayer, Joerg ;
Pan, Jian-Wei .
PHYSICAL REVIEW A, 2007, 76 (02)
[10]   Quantum information to the home [J].
Choi, Iris ;
Young, Robert J. ;
Townsend, Paul D. .
NEW JOURNAL OF PHYSICS, 2011, 13