Application of ion-exchange resin beads to produce magnetic adsorbents

被引:17
作者
Sikora, Emoke [1 ,2 ]
Hajdu, Viktoria [1 ,2 ]
Muranszky, Gabor [1 ,2 ]
Katona, Kitti Krisztina [1 ]
Kocserha, Istvan [2 ,3 ]
Kanazawa, Toshiyuki [4 ]
Fiser, Bela [1 ,2 ,5 ]
Viskolcz, Bela [1 ,2 ]
Vanyorek, Laszlo [1 ,2 ]
机构
[1] Univ Miskolc, Inst Chem, Miskolc, Hungary
[2] Univ Miskolc, Higher Educ Ind Cooperat Ctr, Miskolc, Hungary
[3] Univ Miskolc, Inst Ceram & Polymer Engn, Miskolc, Hungary
[4] JEOL EUROPE SAS, 1 Allee Giverny, Croissy Sur Seine, France
[5] Ferenc Rakoczi II Transcarpathian Hungarian Inst, Beregszasz, Transcarpathia, Ukraine
关键词
Heavy metal ion removal; Magnetite; Adsorption capacity; Langmuir constant; HEAVY-METAL IONS; EFFICIENT REMOVAL; AQUEOUS-SOLUTION; ADSORPTION; NANOPARTICLES; NI(II); PB2+; FABRICATION; CD(II); CR(VI);
D O I
10.1007/s11696-020-01376-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heavy metal ions are among the most dangerous contaminants, which can cause serious health problems. In this work, ion-exchange resin beads were used as supports for magnetite (Fe3O4) synthesis to produce heavy metal adsorbents which can be easily separated by magnetic field. The first step of the magnetite preparation was the replacement of hydrogen ions with Fe(2+)and Fe(3+)ions on the sulfonic acid groups of the resin. In the second step, magnetite particle formation was induced by coprecipitating the iron ions with sodium hydroxide. The regeneration of the ion-exchange resin was also carried out by using sodium hydroxide. SEM images verified that relatively large magnetite crystal particles (diameter = 100-150 nm) were created. The ion-exchange effect of the prepared magnetic adsorbent was also confirmed by applying Cu2+, Ni2+, Pb(2+)and Cd(2+)ions in adsorption experiments.
引用
收藏
页码:1187 / 1195
页数:9
相关论文
共 53 条
[31]   Equilibrium Isotherm Studies of Adsorption of Pigments Extracted from Kuduk-kuduk (Melastoma malabathricum L.) Pulp onto TiO2 Nanoparticles [J].
Kumara, N. T. R. N. ;
Hamdan, Nurulhayah ;
Petra, Mohammad Iskandar ;
Tennakoon, Kushan U. ;
Ekanayake, Piyasiri .
JOURNAL OF CHEMISTRY, 2014, 2014
[32]  
Lokhande R.S., 2011, OJPC, V01, P45, DOI [10.4236/ojpc.2011.12007, DOI 10.4236/OJPC.2011.12007]
[33]  
Masindi V., 2018, HEAVY METALS PP, P117, DOI DOI 10.5772/INTECHOPEN.76082
[34]   Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation [J].
Naushad, Mu. ;
ALOthman, Zeid A. .
DESALINATION AND WATER TREATMENT, 2015, 53 (08) :2158-2166
[35]   Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin [J].
Naushad, Mu. ;
Vasudevan, S. ;
Sharma, G. ;
Kumar, A. ;
ALOthman, Z. A. .
DESALINATION AND WATER TREATMENT, 2016, 57 (39) :18551-18559
[36]   Adsorption of dyes and heavy metal ions by chitosan composites: A review [J].
Ngah, W. S. Wan ;
Teong, L. C. ;
Hanafiah, M. A. K. M. .
CARBOHYDRATE POLYMERS, 2011, 83 (04) :1446-1456
[37]  
Nica A, 2019, Curr Trends Nat Sci, V8, P209
[38]   THE REMOVAL OF HEAVY-METALS BY USING AGRICULTURAL WASTES [J].
ORHAN, Y ;
BUYUKGUNGOR, H .
WATER SCIENCE AND TECHNOLOGY, 1993, 28 (02) :247-255
[39]   Removal of toxic metal ions with magnetic hydrogels [J].
Ozay, Ozgur ;
Ekici, Sema ;
Baran, Yakup ;
Aktas, Nahit ;
Sahiner, Nurettin .
WATER RESEARCH, 2009, 43 (17) :4403-4411
[40]   CHROMIUM REMOVAL FROM WATER BY ION-EXCHANGE USING ZEOLITE [J].
PANSINI, M ;
COLELLA, C ;
DEGENNARO, M .
DESALINATION, 1991, 83 (1-3) :145-157