Thermal-hydraulic modeling and analysis of the Water Cooling System for the ITER Test Blanket Module

被引:12
作者
Ciurluini, Cristiano [1 ]
Giannetti, Fabio [1 ]
Tincani, Amelia [2 ]
Del Nevo, Alessandro [2 ]
Caruso, Gianfranco [1 ]
Ricapito, Italo [3 ]
Cismondi, Fabio [4 ]
机构
[1] Sapienza Univ Rome, Dept Astronaut Elect & Energy Engn DIAEE, Rome, Italy
[2] ENEA FSN ING CR Brasimone, I-40032 Camugnano, BO, Italy
[3] ITER Dept, F4E, Barcelona, Spain
[4] PPPT Dept, EUROfus Consortium, Garching, Germany
关键词
ITER; WCLL; TBM; WCS; RELAP5; NOS; BREEDING BLANKET; DESIGN;
D O I
10.1016/j.fusengdes.2020.111709
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The Water Cooled Lithium Lead (WCLL) is one of the selected breeding blanket (BB) concepts to be investigated in the EUROfusion Breeding Blanket Project (WPBB), and it was also recently chosen as one of the mock-up for ITER Test Blanket Module (TBM) program. The program foresees the test of different BB mock-ups, called Test Blanket Modules, with all the related ancillary systems. A pre-conceptual design of the Water Cooling System (WCS) of the ITER WCLL-TBM was developed considering the same cooling function of the EU-DEMO WCLL-BB primary heat transfer system (PHTS), but matching different boundary conditions: a scaled source power and far lower heat sink temperatures. A complete thermal-hydraulic (TH) model of the WCS loop and TBM set was developed using a modified version of RELAP5/Mod3.3 system code to verify component sizing and to investigate the system behavior during steady-state and transient conditions. The full plasma power scenario was simulated and used as an initial condition for transient calculations. ITER Normal Operational State (NOS) was studied to evaluate the system response. Simulation results highlighted the need for an electric heater to keep the WCS system in stable operation. A sensitivity analysis was carried out to optimize the heater duty cycle.
引用
收藏
页数:7
相关论文
共 12 条
[1]   Updated design and integration of the ancillary circuits for the European Test Blanket Systems [J].
Aiello, A. ;
Arena, P. ;
Di Maio, P. A. ;
Ferrucci, B. ;
Forte, R. ;
Frisoni, M. ;
Galabert, J. ;
Ghidersa, B. E. ;
Granieri, M. ;
Ortiz, C. ;
Polidori, M. ;
Ricapito, I. ;
Tincani, A. ;
Tian, K. ;
Voukelatou, K. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :27-30
[2]  
Aubert Julien, 2019, INT S FUS NUCL TECHN
[3]   Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project [J].
Del Nevo, A. ;
Arena, P. ;
Caruso, G. ;
Chiovaro, P. ;
Di Maio, P. A. ;
Eboli, M. ;
Edemetti, F. ;
Forgione, N. ;
Forte, R. ;
Froio, A. ;
Giannetti, F. ;
Di Gironimo, G. ;
Jiang, K. ;
Liu, S. ;
Moro, F. ;
Mozzillo, R. ;
Savoldi, L. ;
Tarallo, A. ;
Tarantino, M. ;
Tassone, A. ;
Utili, M. ;
Villari, R. ;
Zanino, R. ;
Martelli, E. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :1805-1809
[4]   An overview of the EU breeding blanket design strategy as an integral part of the DEMO design effort [J].
Federici, G. ;
Boccaccini, L. ;
Cismondi, F. ;
Gasparotto, M. ;
Poitevin, Y. ;
Ricapito, I. .
FUSION ENGINEERING AND DESIGN, 2019, 141 :30-42
[5]   Overview of the ITER TBM Program [J].
Giancarli, L. M. ;
Abdou, M. ;
Campbell, D. J. ;
Chuyanov, V. A. ;
Ahn, M. Y. ;
Enoeda, M. ;
Pan, C. ;
Poitevin, Y. ;
Kumar, E. Rajendra ;
Ricapito, I. ;
Strebkov, Y. ;
Suzuki, S. ;
Wong, P. C. ;
Zmitko, M. .
FUSION ENGINEERING AND DESIGN, 2012, 87 (5-6) :395-402
[6]  
Giancarli L.M., 2019, INT S FUS NUCL TECHN
[7]  
Idelchik I.E., 2007, Handbook of Hydraulic Resistance, Vfourth
[8]   Thermal-hydraulic modeling and analyses of the water-cooled EU DEMO using RELAP5 system code [J].
Martelli, Emanuela ;
Giannetti, Fabio ;
Ciurluini, Cristiano ;
Caruso, Gianfranco ;
Del Nevo, Alessandro .
FUSION ENGINEERING AND DESIGN, 2019, 146 :1121-1125
[9]   Study of EU DEMO WCLL breeding blanket and primary heat transfer system integration [J].
Martelli, Emanuela ;
Giannetti, Fabio ;
Caruso, Gianfranco ;
Tarallo, Andrea ;
Polidori, Massimiliano ;
Barucca, Luciana ;
Del Nevo, Alessandro .
FUSION ENGINEERING AND DESIGN, 2018, 136 :828-833
[10]  
Ortiz C., 2020, TBM PORT PLUG TBM PP