Comparative study of joint analysis of microarray gene expression data in survival prediction and risk assessment of breast cancer patients

被引:20
作者
Yasrebi, Haleh [1 ]
机构
[1] Swiss Fed Inst Technol EPFL, Sch Life Sci SV, Swiss Inst Expt Canc Res ISREC, Swiss Inst Bioinformat,Stn 15, CH-1015 Lausanne, Switzerland
关键词
microarray; gene expression; survival analysis; risk assessment; HISTOLOGIC GRADE; DATA SETS; METAANALYSIS; PROGNOSIS; RECURRENCE; SUBTYPES; THERAPY; STRATIFICATION; CLASSIFICATION; NORMALIZATION;
D O I
10.1093/bib/bbv092
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microarray gene expression data sets are jointly analyzed to increase statistical power. They could either be merged together or analyzed by meta-analysis. For a given ensemble of data sets, it cannot be foreseen which of these paradigms, merging or meta-analysis, works better. In this article, three joint analysis methods, Z-score normalization, ComBat and the inverse normal method (meta-analysis) were selected for survival prognosis and risk assessment of breast cancer patients. The methods were applied to eight microarray gene expression data sets, totaling 1324 patients with two clinical endpoints, overall survival and relapse-free survival. The performance derived from the joint analysis methods was evaluated using Cox regression for survival analysis and independent validation used as bias estimation. Overall, Z-score normalization had a better performance than ComBat and meta-analysis. Higher Area Under the Receiver Operating Characteristic curve and hazard ratio were also obtained when independent validation was used as bias estimation. With a lower time and memory complexity, Z-score normalization is a simple method for joint analysis of microarray gene expression data sets. The derived findings suggest further assessment of this method in future survival prediction and cancer classification applications.
引用
收藏
页码:771 / 785
页数:15
相关论文
共 64 条
[51]   Genomic Index of Sensitivity to Endocrine Therapy for Breast Cancer [J].
Symmans, W. Fraser ;
Hatzis, Christos ;
Sotiriou, Christos ;
Andre, Fabrice ;
Peintinger, Florentia ;
Regitnig, Peter ;
Daxenbichler, Guenter ;
Desmedt, Christine ;
Domont, Julien ;
Marth, Christian ;
Delaloge, Suzette ;
Bauernhofer, Thomas ;
Valero, Vicente ;
Booser, Daniel J. ;
Hortobagyi, Gabriel N. ;
Pusztai, Lajos .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (27) :4111-4119
[52]  
Taminau Jonatan, 2014, ISRN Bioinform, V2014, P345106, DOI 10.1155/2014/345106
[53]  
Team RDC, 2009, R LANG ENV STAT COMP
[54]   Missing value estimation methods for DNA microarrays [J].
Troyanskaya, O ;
Cantor, M ;
Sherlock, G ;
Brown, P ;
Hastie, T ;
Tibshirani, R ;
Botstein, D ;
Altman, RB .
BIOINFORMATICS, 2001, 17 (06) :520-525
[55]   A 10-gene classifier for distinguishing headand neck squamous cell carcinoma and lung squamous cell carcinoma [J].
Vachani, Anil ;
Nebozhyn, Michael ;
Singhal, Sunil ;
Alila, Linda ;
Wakeam, Elliot ;
Muschel, Ruth ;
Powel, Charles A. ;
Gaffney, Patrick ;
Singh, Bhuvanesh ;
Brose, Marcia S. ;
Litzky, Leslie A. ;
Kucharczuk, John ;
Kaiser, Larry R. ;
Marron, J. Stephen ;
Showe, Michael K. ;
Albelda, Steven M. ;
Showe, Louise C. .
CLINICAL CANCER RESEARCH, 2007, 13 (10) :2905-2915
[56]   A gene-expression signature as a predictor of survival in breast cancer. [J].
van de Vijver, MJ ;
He, YD ;
van 't Veer, LJ ;
Dai, H ;
Hart, AAM ;
Voskuil, DW ;
Schreiber, GJ ;
Peterse, JL ;
Roberts, C ;
Marton, MJ ;
Parrish, M ;
Atsma, D ;
Witteveen, A ;
Glas, A ;
Delahaye, L ;
van der Velde, T ;
Bartelink, H ;
Rodenhuis, S ;
Rutgers, ET ;
Friend, SH ;
Bernards, R .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 347 (25) :1999-2009
[57]   Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability [J].
van Vliet, Martin H. ;
Reyal, Fabien ;
Horlings, Hugo M. ;
van de Vijver, Marc J. ;
Reinders, Marcel J. T. ;
Wessels, Lodewyk F. A. .
BMC GENOMICS, 2008, 9 (1)
[58]   Most Random Gene Expression Signatures Are Significantly Associated with Breast Cancer Outcome [J].
Venet, David ;
Dumont, Jacques E. ;
Detours, Vincent .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (10)
[59]   Gene-expression pro-files to predict distant metastasis of lymph-node-negative primary breast cancer [J].
Wang, YX ;
Klijn, JGM ;
Zhang, Y ;
Sieuwerts, A ;
Look, MP ;
Yang, F ;
Talantov, D ;
Timmermans, M ;
Meijer-van Gelder, ME ;
Yu, J ;
Jatkoe, T ;
Berns, EMJJ ;
Atkins, D ;
Foekens, JA .
LANCET, 2005, 365 (9460) :671-679
[60]   Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures [J].
Wirapati, Pratyaksha ;
Sotiriou, Christos ;
Kunkel, Susanne ;
Farmer, Pierre ;
Pradervand, Sylvain ;
Haibe-Kains, Benjamin ;
Desmedt, Christine ;
Ignatiadis, Michail ;
Sengstag, Thierry ;
Schuetz, Frederic ;
Goldstein, Darlene R. ;
Piccart, Martine ;
Delorenzi, Mauro .
BREAST CANCER RESEARCH, 2008, 10 (04)