Comparative study of joint analysis of microarray gene expression data in survival prediction and risk assessment of breast cancer patients

被引:20
作者
Yasrebi, Haleh [1 ]
机构
[1] Swiss Fed Inst Technol EPFL, Sch Life Sci SV, Swiss Inst Expt Canc Res ISREC, Swiss Inst Bioinformat,Stn 15, CH-1015 Lausanne, Switzerland
关键词
microarray; gene expression; survival analysis; risk assessment; HISTOLOGIC GRADE; DATA SETS; METAANALYSIS; PROGNOSIS; RECURRENCE; SUBTYPES; THERAPY; STRATIFICATION; CLASSIFICATION; NORMALIZATION;
D O I
10.1093/bib/bbv092
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microarray gene expression data sets are jointly analyzed to increase statistical power. They could either be merged together or analyzed by meta-analysis. For a given ensemble of data sets, it cannot be foreseen which of these paradigms, merging or meta-analysis, works better. In this article, three joint analysis methods, Z-score normalization, ComBat and the inverse normal method (meta-analysis) were selected for survival prognosis and risk assessment of breast cancer patients. The methods were applied to eight microarray gene expression data sets, totaling 1324 patients with two clinical endpoints, overall survival and relapse-free survival. The performance derived from the joint analysis methods was evaluated using Cox regression for survival analysis and independent validation used as bias estimation. Overall, Z-score normalization had a better performance than ComBat and meta-analysis. Higher Area Under the Receiver Operating Characteristic curve and hazard ratio were also obtained when independent validation was used as bias estimation. With a lower time and memory complexity, Z-score normalization is a simple method for joint analysis of microarray gene expression data sets. The derived findings suggest further assessment of this method in future survival prediction and cancer classification applications.
引用
收藏
页码:771 / 785
页数:15
相关论文
共 64 条
[41]   Gene expression profiling spares early breast cancer patients from adjuvant therapy:: derived and validated in two population-based cohorts [J].
Pawitan, Y ;
Bjöhle, J ;
Amler, L ;
Borg, AL ;
Egyhazi, S ;
Hall, P ;
Han, X ;
Holmberg, L ;
Huang, F ;
Klaar, S ;
Liu, ET ;
Miller, L ;
Nordgren, H ;
Ploner, A ;
Sandelin, K ;
Shaw, PM ;
Smeds, J ;
Skoog, L ;
Wedrén, S ;
Bergh, J .
BREAST CANCER RESEARCH, 2005, 7 (06) :R953-R964
[42]   Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay [J].
Perreard, L ;
Fan, C ;
Quackenbush, JF ;
Mullins, M ;
Gauthier, NP ;
Nelson, E ;
Mone, M ;
Hansen, H ;
Buys, SS ;
Rasmussen, K ;
Orrico, AR ;
Dreher, D ;
Walters, R ;
Parker, J ;
Hu, ZY ;
He, XP ;
Palazzo, JP ;
Olopade, OI ;
Szabo, A ;
Perou, CM ;
Bernard, PS .
BREAST CANCER RESEARCH, 2006, 8 (02)
[43]   A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the Proliferation, Immune response and RNA splicing modules in breast cancer [J].
Reyal, Fabien ;
van Vliet, Martin H. ;
Armstrong, Nicola J. ;
Horlings, Hugo M. ;
de Visser, Karin E. ;
Kok, Marlen ;
Teschendorff, Andrew E. ;
Mook, Stella ;
van 't Veer, Laura ;
Caldas, Carlos ;
Salmon, Remy J. ;
van de Vijver, Marc J. ;
Wessels, Lodewyk F. A. .
BREAST CANCER RESEARCH, 2008, 10 (06)
[44]   Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression [J].
Rhodes, DR ;
Yu, JJ ;
Shanker, K ;
Deshpande, N ;
Varambally, R ;
Ghosh, D ;
Barrette, T ;
Pandey, A ;
Chinnaiyan, AM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (25) :9309-9314
[45]   Empirical comparison of cross-platform normalization methods for gene expression data [J].
Rudy, Jason ;
Valafar, Faramarz .
BMC BIOINFORMATICS, 2011, 12
[46]   Down-Regulation of ECRG4, a Candidate Tumor Suppressor Gene, in Human Breast Cancer [J].
Sabatier, Renaud ;
Finetti, Pascal ;
Adelaide, Jose ;
Guille, Arnaud ;
Borg, Jean-Paul ;
Chaffanet, Max ;
Lane, Lydie ;
Birnbaum, Daniel ;
Bertucci, Francois .
PLOS ONE, 2011, 6 (11)
[47]   A gene expression signature identifies two prognostic subgroups of basal breast cancer [J].
Sabatier, Renaud ;
Finetti, Pascal ;
Cervera, Nathalie ;
Lambaudie, Eric ;
Esterni, Benjamin ;
Mamessier, Emilie ;
Tallet, Agnes ;
Chabannon, Christian ;
Extra, Jean-Marc ;
Jacquemier, Jocelyne ;
Viens, Patrice ;
Birnbaum, Daniel ;
Bertucci, Francois .
BREAST CANCER RESEARCH AND TREATMENT, 2011, 126 (02) :407-420
[48]   Repeated observation of breast tumor subtypes in independent gene expression data sets [J].
Sorlie, T ;
Tibshirani, R ;
Parker, J ;
Hastie, T ;
Marron, JS ;
Nobel, A ;
Deng, S ;
Johnsen, H ;
Pesich, R ;
Geisler, S ;
Demeter, J ;
Perou, CM ;
Lonning, PE ;
Brown, PO ;
Borresen-Dale, AL ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (14) :8418-8423
[49]   Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis [J].
Sotiriou, C ;
Wirapati, P ;
Loi, S ;
Harris, A ;
Fox, S ;
Smeds, J ;
Nordgren, H ;
Farmer, P ;
Praz, V ;
Haibe-Kains, B ;
Desmedt, C ;
Larsimont, D ;
Cardoso, F ;
Peterse, H ;
Nuyten, D ;
Buyse, M ;
Van de Vijver, MJ ;
Bergh, J ;
Piccart, MT ;
Delorenzi, M .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2006, 98 (04) :262-272
[50]   Comparison of the predictive accuracy of DNA array-based multigene classifiers across cDNA arrays and affymetrix GeneChips [J].
Stec, J ;
Wang, J ;
Coombes, K ;
Ayers, M ;
Hoersch, S ;
Gold, DL ;
Ross, JS ;
Hess, KR ;
Tirrell, S ;
Linette, G ;
Hortobagyi, GN ;
Symmans, WF ;
Pusztai, L .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2005, 7 (03) :357-367