Comparative study of joint analysis of microarray gene expression data in survival prediction and risk assessment of breast cancer patients

被引:20
作者
Yasrebi, Haleh [1 ]
机构
[1] Swiss Fed Inst Technol EPFL, Sch Life Sci SV, Swiss Inst Expt Canc Res ISREC, Swiss Inst Bioinformat,Stn 15, CH-1015 Lausanne, Switzerland
关键词
microarray; gene expression; survival analysis; risk assessment; HISTOLOGIC GRADE; DATA SETS; METAANALYSIS; PROGNOSIS; RECURRENCE; SUBTYPES; THERAPY; STRATIFICATION; CLASSIFICATION; NORMALIZATION;
D O I
10.1093/bib/bbv092
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microarray gene expression data sets are jointly analyzed to increase statistical power. They could either be merged together or analyzed by meta-analysis. For a given ensemble of data sets, it cannot be foreseen which of these paradigms, merging or meta-analysis, works better. In this article, three joint analysis methods, Z-score normalization, ComBat and the inverse normal method (meta-analysis) were selected for survival prognosis and risk assessment of breast cancer patients. The methods were applied to eight microarray gene expression data sets, totaling 1324 patients with two clinical endpoints, overall survival and relapse-free survival. The performance derived from the joint analysis methods was evaluated using Cox regression for survival analysis and independent validation used as bias estimation. Overall, Z-score normalization had a better performance than ComBat and meta-analysis. Higher Area Under the Receiver Operating Characteristic curve and hazard ratio were also obtained when independent validation was used as bias estimation. With a lower time and memory complexity, Z-score normalization is a simple method for joint analysis of microarray gene expression data sets. The derived findings suggest further assessment of this method in future survival prediction and cancer classification applications.
引用
收藏
页码:771 / 785
页数:15
相关论文
共 64 条
[1]   RETRACTED: Gene expression signatures, clinicopathological features, and individualized therapy in breast cancer (Retracted Article) [J].
Acharya, Chaitanya R. ;
Hsu, David S. ;
Anders, Carey K. ;
Anguiano, Ariel ;
Salter, Kelly H. ;
Walters, Kelli S. ;
Redman, Richard C. ;
Tuchman, Sascha A. ;
Moylan, Cynthia A. ;
Mukherjee, Sayan ;
Barry, William T. ;
Dressman, Holly K. ;
Ginsburg, Geoffrey S. ;
Marcom, Kelly P. ;
Garman, Katherine S. ;
Lyman, Gary H. ;
Nevins, Joseph R. ;
Potti, Anil .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2008, 299 (13) :1574-1587
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]   Generating survival times to simulate Cox proportional hazards models [J].
Bender, R ;
Augustin, T ;
Blettner, M .
STATISTICS IN MEDICINE, 2005, 24 (11) :1713-1723
[4]   Adjustment of systematic microarray data biases [J].
Benito, M ;
Parker, J ;
Du, Q ;
Wu, JY ;
Xang, D ;
Perou, CM ;
Marron, JS .
BIOINFORMATICS, 2004, 20 (01) :105-114
[5]   Comparison of data-merging methods with SVM attribute selection and classification in breast cancer gene expression [J].
Bevilacqua, Vitoantonio ;
Pannarale, Paolo ;
Abbrescia, Mirko ;
Cava, Claudia ;
Paradiso, Angelo ;
Tommasi, Stefania .
BMC BIOINFORMATICS, 2012, 13
[6]   Oncogenic pathway signatures in human cancers as a guide to targeted therapies [J].
Bild, AH ;
Yao, G ;
Chang, JT ;
Wang, QL ;
Potti, A ;
Chasse, D ;
Joshi, MB ;
Harpole, D ;
Lancaster, JM ;
Berchuck, A ;
Olson, JA ;
Marks, JR ;
Dressman, HK ;
West, M ;
Nevins, JR .
NATURE, 2006, 439 (7074) :353-357
[7]   Meta-Analysis of Microarray Data Identifies GAS6 Expression as an Independent Predictor of Poor Survival in Ovarian Cancer [J].
Buehler, Michelle ;
Tse, Brian ;
Leboucq, Alix ;
Jacob, Francis ;
Caduff, Rosmarie ;
Fink, Daniel ;
Goldstein, Darlene R. ;
Heinzelmann-Schwarz, Viola .
BIOMED RESEARCH INTERNATIONAL, 2013, 2013
[8]   Thymosin β4 has tumor suppressive effects and its decreased expression results in poor prognosis and decreased survival in multiple myeloma [J].
Caers, Jo ;
Hose, Dirk ;
Kuipers, Ine ;
Bos, Tomas Jan ;
Van Valckenborgh, Els ;
Menu, Eline ;
De Bruyne, Elke ;
Goldschmidt, Hartmut ;
Van Camp, Ben ;
Klein, Bernard ;
Vanderkerken, Karin .
HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2010, 95 (01) :163-167
[9]   Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients [J].
Calza, Stefano ;
Hall, Per ;
Auer, Gert ;
Bjohle, Judith ;
Klaar, Sigrid ;
Kronenwett, Ulrike ;
T Liu, Edison ;
Miller, Lance ;
Ploner, Alexander ;
Smeds, Johanna ;
Bergh, Jonas ;
Pawitan, Yudi .
BREAST CANCER RESEARCH, 2006, 8 (04)
[10]   An integrated cross-platform prognosis study on neuroblastoma patients [J].
Chen, Qing-Rong ;
Song, Young K. ;
Wei, Jun S. ;
Bilke, Sven ;
Asgharzadeh, Shahab ;
Seeger, Robert C. ;
Khan, Javed .
GENOMICS, 2008, 92 (04) :195-203