Nano-to-macroporous TiO2 (anatase) by cold sintering process

被引:30
作者
Medri, Valentina [1 ]
Servadei, Francesca [1 ]
Bendoni, Riccardo [1 ,3 ]
Murri, Annalisa Natali [1 ]
Vaccari, Angelo [1 ,2 ]
Landi, Elena [1 ]
机构
[1] CNR ISTEC, Natl Res Council Italy, Inst Sci & Technol Ceram, Via Granarolo 64, I-48018 Faenza, Italy
[2] Univ Bologna, Toso Montanari Dept Ind Chem, I-40100 Bologna, Italy
[3] NIS Mat Sr1, Via Mario Longhena 1, I-40139 Bologna, Italy
关键词
Titanium oxide; Anatase; Cold sintering process; Porous ceramics; Nanopowders; DENSIFICATION; DEGRADATION; CERAMICS; EMISSION; PHASE; WATER;
D O I
10.1016/j.jeurceramsoc.2019.02.047
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cold Sintering Process (CSP) was applied on commercial nanopowders to produce nanostructured TiO2 anatase with nano-to-macro porosity. Nanoporous TiO2 based materials were obtained by applying CSP at 150 degrees C and pressures up to 500 MPa on three TiO2 nanopowders with different specific surface area (s.s.a. = 50, 90 and 370 m(2)/g), using water as transient aqueous environment Although TiO2 is insoluble in water, a density of 68% and s.s.a. = 117 m(2)/g were achieved from the powder with the highest specific surface area. A post annealing process at 500 degrees C increased the density up to 73% with a s.s.a. = 59 m(2)/g, and the crystallites dimensions passed from 110 angstrom in the powder to 130 angstrom in CSP material and 172 angstrom after post annealing. Finally, macroporosity was produced by using thermoplastic polymer beads as sacrificial templates within TiO2 nanopowder during CSP, followed by a debonding at 500 degrees C.
引用
收藏
页码:2453 / 2462
页数:10
相关论文
共 39 条
[1]   Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development [J].
Ani, I. J. ;
Akpan, U. G. ;
Olutoye, M. A. ;
Hameed, B. H. .
JOURNAL OF CLEANER PRODUCTION, 2018, 205 :930-954
[2]  
Bagheri Samira, 2014, Scientific World Journal, DOI 10.1155/2014/727496
[3]   Flash sintering of ceramics [J].
Biesuz, Mattia ;
Sglavo, Vincenzo M. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2019, 39 (2-3) :115-143
[4]   Sintering Rate and Mechanism of TiO2 Nanoparticles by Molecular Dynamics [J].
Buesser, B. ;
Groehn, A. J. ;
Pratsinis, S. E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (22) :11030-11035
[5]   Effect of sintering on microstructure of TiO2 ceramics [J].
Burg, T. ;
Bak, T. ;
Nowotny, J. ;
Sheppard, L. ;
Sorrell, C. C. ;
Vance, E. R. .
ADVANCES IN APPLIED CERAMICS, 2007, 106 (1-2) :57-62
[6]   TiO2 based photocatalytic coatings: From nanostructure to functional properties [J].
Costa, Anna Luisa ;
Ortelli, Simona ;
Blosi, Magda ;
Albonetti, Stefania ;
Vaccari, Angelo ;
Dondi, Michele .
CHEMICAL ENGINEERING JOURNAL, 2013, 225 :880-886
[7]  
Engineerplant, 2019, TAB PROPR FIS MECC M
[8]  
German R.M., 1996, Sintering Theory and Practice
[9]   Cold sintering process for 8 mol%Y2O3-stabilized ZrO2 ceramics [J].
Guo, Hanzheng ;
Bayer, Thorsten J. M. ;
Guo, Jing ;
Baker, Amanda ;
Randall, Clive A. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (05) :2303-2308
[10]   Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process [J].
Guo, Hanzheng ;
Baker, Amanda ;
Guo, Jing ;
Randall, Clive A. .
ACS NANO, 2016, 10 (11) :10606-10614