Randomized Ancillary Qubit Overcomes Detector-Control and Intercept-Resend Hacking of Quantum Key Distribution

被引:4
作者
Hegazy, Salem F. [1 ]
Obayya, Salah S. A. [2 ]
Saleh, Bahaa E. A. [3 ]
机构
[1] Cairo Univ, Natl Inst Laser Enhanced Sci, Giza 12613, Egypt
[2] Zewail City Sci & Technol, Ctr Photon & Smart Mat, Giza 12578, Egypt
[3] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA
关键词
Photonics; Detectors; Polarization; Qubit; Security; Logic gates; Optical attenuators; Detector control; faked state photons; intercept and resend attacks; optical fiber communication; plug-and-play quantum key distribution; quantum encryption; SINGLE-PHOTON DETECTORS; UNCONDITIONAL SECURITY; DISTRIBUTION-SYSTEM; ATTACK;
D O I
10.1109/JLT.2022.3198108
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Practical implementations of quantum key distribution (QKD) have been shown to be subject to various detector side-channel attacks that compromise the promised unconditional security. Most notable is a general class of attacks adopting the use of faked-state photons as in the detector-control and, more broadly, the intercept-resend attacks. In this paper, we present a simple scheme to overcome such class of attacks: A legitimate user, Bob, uses a polarization randomizer at his gateway to distort an ancillary polarization of a phase-encoded photon in a bidirectional QKD configuration. Passing through the randomizer once on the way to his partner, Alice, and again in the opposite direction, the polarization qubit of the genuine photon is immune to randomization. However, the polarization state of a photon from an intruder, Eve, to Bob is randomized and hence directed to a detector in a different path, whereupon it triggers an alert. We demonstrate theoretically and experimentally that, using commercial off-the-shelf detectors, it can be made impossible for Eve to avoid triggering the alert, no matter what faked-state of light she uses.
引用
收藏
页码:6995 / 7005
页数:11
相关论文
共 72 条
[1]   Phase auto-compensating high-dimensional quantum cryptography in elliptical-core few-mode fibres [J].
Balado Souto, Daniel ;
Linares, Jesus ;
Prieto-Blanco, Xesus .
JOURNAL OF MODERN OPTICS, 2019, 66 (09) :947-957
[2]   Squashing models for optical measurements in quantum communication [J].
Beaudry, Normand J. ;
Moroder, Tobias ;
Lutkenhaus, Norbert .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[3]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[4]  
Bennett C. H., 1984, P INT C COMPUTERS SY, P175, DOI [10.1016/j.tcs.2014.05.025, DOI 10.1016/J.TCS.2014.05.025]
[5]   REDUCTION OF QUANTUM ENTROPY BY REVERSIBLE EXTRACTION OF CLASSICAL INFORMATION [J].
BENNETT, CH ;
BRASSARD, G ;
JOZSA, R ;
MAYERS, D ;
PERES, A ;
SCHUMACHER, B ;
WOOTTERS, WK .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2307-2314
[6]   Autocompensating quantum cryptography [J].
Bethune, DS ;
Risk, WP .
NEW JOURNAL OF PHYSICS, 2002, 4 :42.1-42.15
[7]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[8]   Side-Channel-Free Quantum Key Distribution [J].
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[9]   Laser Damage Helps the Eavesdropper in Quantum Cryptography [J].
Bugge, Audun Nystad ;
Sauge, Sebastien ;
Ghazali, Aina Mardhiyah M. ;
Skaar, Johannes ;
Lydersen, Lars ;
Makarov, Vadim .
PHYSICAL REVIEW LETTERS, 2014, 112 (07)
[10]   Eavesdropper's ability to attack a free-space quantum-key-distribution receiver in atmospheric turbulence [J].
Chaiwongkhot, Poompong ;
Kuntz, Katanya B. ;
Zhang, Yanbao ;
Huang, Anqi ;
Bourgoin, Jean-Philippe ;
Sajeed, Shihan ;
Lutkenhaus, Norbert ;
Jennewein, Thomas ;
Makarov, Vadim .
PHYSICAL REVIEW A, 2019, 99 (06)