An Extension on the Local Convergence for the Multi-Step Seventh Order Method with ψ-Continuity Condition in the Banach Spaces

被引:1
作者
Darvishi, Mohammad Taghi [1 ]
Al-Obaidi, R. H. [1 ,2 ]
Saxena, Akanksha [3 ]
Jaiswal, Jai Prakash [4 ]
Pardasani, Kamal Raj [3 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah, Iran
[2] Al Mustaqbal Univ Coll, Med Phys Dept, Hillah 51001, Iraq
[3] Maulana Azad Natl Inst Technol, Dept Math, Bhopal 462003, India
[4] Guru Ghasidas Vishwavidyalaya, Dept Math, Bilaspur 495009, India
关键词
nonlinear equation; Banach space; multi-step method; psi-continuity condition; local convergence; SOLVING SYSTEMS;
D O I
10.3390/fractalfract6120713
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The local convergence analysis of the multi-step seventh order method to solve nonlinear equations is presented in this paper. The point of this paper is that our proposed study requires a weak hypothesis where the Frechet derivative of the nonlinear operator satisfies the psi-continuity condition, which thereby extends the applicability of the method when both Lipschitz and Holder conditions fail. The convergence in this study is considered under the hypotheses on the first-order derivative without involving derivatives of the higher-order. To find a subset of the original convergence domain, a strategy is devised here. As a result, the new Lipschitz constants are at least as tight as the old ones, allowing for a more precise convergence analysis in the local convergence case. Some concrete numerical examples showing the performance of the method over some existing schemes are presented in this article.
引用
收藏
页数:11
相关论文
共 20 条
[1]   Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces [J].
Argyros, I. K. ;
Gonzalez, D. ;
Khattri, S. K. .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2016, 57 (03) :289-300
[2]  
Argyros I.K., 2016, J MATH-UK, V46, P52
[3]  
Argyros I.K., 2016, APPL MATH, V41, P341, DOI [10.4064/am41-4-5, DOI 10.4064/AM41-4-5]
[4]  
Argyros I.K., 2018, MALAYA J MAT, V6, P396, DOI [10.26637/MJM0602/0016, DOI 10.26637/MJM0602/0016]
[5]  
Argyros IK., 2013, Computational methods in nonlinear analysis: efficient algorithms
[6]   Some High-Order Convergent Iterative Procedures for Nonlinear Systems with Local Convergence [J].
Behl, Ramandeep ;
Argyros, Ioannis K. ;
Mallawi, Fouad Othman .
MATHEMATICS, 2021, 9 (12)
[7]  
Behl Ramandeep, 2015, ScientificWorldJournal, V2015, P614612, DOI 10.1155/2015/614612
[8]   On the local convergence of a fifth-order iterative method in Banach spaces [J].
Cordero, A. ;
Ezquerro, J. A. ;
Hernandez-Veron, M. A. ;
Torregrosa, J. R. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 :396-403
[9]  
Kantorovich L. V., 1982, Functional Analysis
[10]   Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces [J].
Martinez, Eulalia ;
Singh, Sukhjit ;
Hueso, Jose L. ;
Gupta, Dharmendra K. .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 281 :252-265