Epigenetic regulation of hematopoietic stem cell homeostasis

被引:15
作者
Jiang, Penglei [1 ,2 ,3 ]
Wang, Hui [1 ,2 ,3 ]
Zheng, Jiachen [1 ,2 ,3 ]
Han, Yingli [1 ,2 ,3 ]
Huang, He [1 ,2 ,3 ]
Qian, Pengxu [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 1, Sch Med, Ctr Stem Cell & Regenerat Med, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Affiliated Hosp 1, Bone Marrow Transplantat Ctr, Sch Med, Hangzhou 310058, Peoples R China
[3] Zhejiang Univ, Zhejiang Engn Lab Stem Cell & Immunotherapy, Inst Hematol, Hangzhou, Peoples R China
来源
BLOOD SCIENCE | 2019年 / 1卷 / 01期
基金
中国国家自然科学基金;
关键词
Epigenetics; Hematopoietic stem cells; Homeostasis; LONG NONCODING RNAS; DNA METHYLATION DYNAMICS; ZINC-FINGER PROTEIN; SELF-RENEWAL; TRANSCRIPTION FACTORS; MYELOID-LEUKEMIA; DIFFERENTIATION; GENE; TET2; LINEAGE;
D O I
10.1097/BS9.0000000000000018
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
As one of the best characterized adult stem cells, hematopoietic stem cell (HSC) homeostasis is of great importance to hematopoiesis and immunity due to HSC's abilities of self-renewal and multi-lineage differentiation into functional blood cells. However, excessive self-renewal of HSCs can lead to severe hematopoietic malignancies like leukemia, whereas deficient selfrenewal of HSCs may result in HSC exhaustion and eventually apoptosis of specialized cells, giving rise to abnormalities such as immunodeficiency or anemia. How HSC homeostasis is maintained has been studied for decades and regulatory factors can be generally categorized into two classes: genetic factors and epigenetic factors. Although genetic factors such as signaling pathways or transcription factors have been well explored, recent studies have emerged the indispensable roles of epigenetic factors. In this review, we have summarized regulatory mechanisms of HSC homeostasis by epigenetic factors, including DNA methylation, histone modification, chromatin remodeling, non-coding RNAs, and RNA modification, which will facilitate applications such as HSC ex vivo expansion and exploration of novel therapeutic approaches for many hematological diseases.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 97 条
[1]   Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies [J].
Abdel-Wahab, Omar ;
Mullally, Ann ;
Hedvat, Cyrus ;
Garcia-Manero, Guillermo ;
Patel, Jay ;
Wadleigh, Martha ;
Malinge, Sebastien ;
Yao, JinJuan ;
Kilpivaara, Outi ;
Bhat, Rukhmi ;
Huberman, Kety ;
Thomas, Sabrena ;
Dolgalev, Igor ;
Heguy, Adriana ;
Paietta, Elisabeth ;
Le Beau, Michelle M. ;
Beran, Miloslav ;
Tallman, Martin S. ;
Ebert, Benjamin L. ;
Kantarjian, Hagop M. ;
Stone, Richard M. ;
Gilliland, D. Gary ;
Crispino, John D. ;
Levine, Ross L. .
BLOOD, 2009, 114 (01) :144-147
[2]   Glycogen synthase kinase 3β missplicing contributes to leukemia stem cell generation [J].
Abrahamsson, Annelie E. ;
Geron, Ifat ;
Gotlib, Jason ;
Dao, Kim-Hien T. ;
Barroga, Charlene F. ;
Newton, Isabel G. ;
Giles, Francis J. ;
Durocher, Jeffrey ;
Creusot, Remi S. ;
Karimi, Mobin ;
Jones, Carol ;
Zehnder, James L. ;
Keating, Armand ;
Negrin, Robert S. ;
Weissman, Irving L. ;
Jamieson, Catriona H. M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (10) :3925-3929
[3]   Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation [J].
Alvarez-Dominguez, Juan R. ;
Hu, Wenqian ;
Yuan, Bingbing ;
Shi, Jiahai ;
Park, Staphany S. ;
Gromatzky, Austin A. ;
van Oudenaarden, Alexander ;
Lodish, Harvey F. .
BLOOD, 2014, 123 (04) :570-581
[4]   Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control [J].
Barbieri, Isaia ;
Tzelepis, Konstantinos ;
Pandolfini, Luca ;
Shi, Junwei ;
Millan-Zambrano, Gonzalo ;
Robson, Samuel C. ;
Aspris, Demetrios ;
Migliori, Valentina ;
Bannister, Andrew J. ;
Han, Namshik ;
De Braekeleer, Etienne ;
Ponstingl, Hannes ;
Hendrick, Alan ;
Vakoc, Christopher R. ;
Vassiliou, George S. ;
Kouzarides, Tony .
NATURE, 2017, 552 (7683) :126-+
[5]   Imprinted Genes That Regulate Early Mammalian Growth Are Coexpressed in Somatic Stem Cells [J].
Berg, Jonathan S. ;
Lin, Kuanyin K. ;
Sonnet, Corinne ;
Boles, Nathan C. ;
Weksberg, David C. ;
Hoang Nguyen ;
Holt, Lowenna J. ;
Rickwood, Danny ;
Daly, Roger J. ;
Goodell, Margaret A. .
PLOS ONE, 2011, 6 (10)
[6]   Combined Characterization of microRNa and mRNa Profiles Delineates Early Differentiation Pathways of CD133+ and CD34+ Hematopoietic Stem and Progenitor Cells [J].
Bissels, Ute ;
Wild, Stefan ;
Tomiuk, Stefan ;
Hafner, Markus ;
Scheel, Hartmut ;
Mihailovic, Aleksandra ;
Choi, Yeong-Hoon ;
Tuschl, Thomas ;
Bosio, Andreas .
STEM CELLS, 2011, 29 (05) :847-857
[7]   DNA Methylation Dynamics during In Vivo Differentiation of Blood and Skin Stem Cells [J].
Bock, Christoph ;
Beerman, Isabel ;
Lien, Wen-Hui ;
Smith, Zachary D. ;
Gu, Hongcang ;
Boyle, Patrick ;
Gnirke, Andreas ;
Fuchs, Elaine ;
Rossi, Derrick J. ;
Meissner, Alexander .
MOLECULAR CELL, 2012, 47 (04) :633-647
[8]   Making sense of hematopoietic stem cell niches [J].
Boulais, Philip E. ;
Frenette, Paul S. .
BLOOD, 2015, 125 (17) :2621-2629
[9]   DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction [J].
Broeske, Ann-Marie ;
Vockentanz, Lena ;
Kharazi, Shabnam ;
Huska, Matthew R. ;
Mancini, Elena ;
Scheller, Marina ;
Kuhl, Christiane ;
Enns, Andreas ;
Prinz, Marco ;
Jaenisch, Rudolf ;
Nerlov, Claus ;
Leutz, Achim ;
Andrade-Navarro, Miguel A. ;
Jacobsen, Sten Eirik W. ;
Rosenbauer, Frank .
NATURE GENETICS, 2009, 41 (11) :1207-1215
[10]   Identification of Regulatory Networks in HSCs and Their Immediate Progeny via Integrated Proteome, Transcriptome, and DNA Methylome Analysis [J].
Cabezas-Wallscheid, Nina ;
Klimmeck, Daniel ;
Hansson, Jenny ;
Lipka, Daniel B. ;
Reyes, Alejandro ;
Wang, Qi ;
Weichenhan, Dieter ;
Lier, Amelie ;
von Paleske, Lisa ;
Renders, Simon ;
Wuensche, Peer ;
Zeisberger, Petra ;
Brocks, David ;
Gu, Lei ;
Herrmann, Carl ;
Haas, Simon ;
Essers, Marieke A. G. ;
Brors, Benedikt ;
Eils, Roland ;
Huber, Wolfgang ;
Milsom, Michael D. ;
Plass, Christoph ;
Krijgsveld, Jeroen ;
Trumpp, Andreas .
CELL STEM CELL, 2014, 15 (04) :507-522