Prognostic value of a gene signature in clear cell renal cell carcinoma

被引:23
作者
Chen, Liang [1 ]
Luo, Yongwen [1 ]
Wang, Gang [2 ,3 ]
Qian, Kaiyu [2 ,3 ]
Qian, Guofeng [4 ]
Wu, Chin-Lee [5 ]
Dan, Han C. [6 ]
Wang, Xinghuan [1 ]
Xiao, Yu [1 ,2 ,3 ]
机构
[1] Wuhan Univ, Zhongnan Hosp, Dept Urol, Donghu Rd 169, Wuhan 430071, Hubei, Peoples R China
[2] Wuhan Univ, Zhongnan Hosp, Dept Biol Repositories, Wuhan, Hubei, Peoples R China
[3] Wuhan Univ, Zhongnan Hosp, Lab Precis Med, Wuhan, Hubei, Peoples R China
[4] Zhejiang Univ, Affiliated Hosp 1, Dept Endocrinol, Hangzhou, Zhejiang, Peoples R China
[5] Harvard Med Sch, Massachusetts Gen Hosp, Dept Urol, Boston, MA 02115 USA
[6] Univ Maryland, Sch Med, Greenebaum Canc Ctr, Baltimore, MD 21201 USA
关键词
clear cell renal cell carcinoma; mRNA signature; nomogram; overall survival; the Cancer Genome Atlas; COLON-CANCER; EXPRESSION; CLASSIFICATION; IDENTIFICATION; PROGRESSION; ONCOGENE; PATHWAYS; MODEL; STAGE;
D O I
10.1002/jcp.27700
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Renal cancer is acommon urogenital system malignance. Novel biomarkers could provide more and more critical information ontumor features and patients' prognosis. Here, we performed an integrated analysis on the discovery set and established a three-gene signature to predict the prognosis for clear cell renal cell carcinoma (ccRCC). By constructing a LASSO Cox regression model, a 3-messenger RNA (3-mRNA) signature was identified. Based on the 3-mRNA signature, we divided patients into high- and low-risk groups, and validated thisby using three other data sets. In the discovery set, this signature could successfully distinguish between the high- and low-risk patients (hazard ratio (HR), 2.152; 95% confidence interval (CI),1.509-3.069; p<0.0001). Analysis ofinternal and two external validation sets yielded consistent results (internal: HR, 2.824; 95% CI, 1.601-4.98; p<0.001; GSE29609: HR, 3.002; 95% CI, 1.113-8.094; p=0.031; E-MTAB-3267: HR, 2.357; 95% CI, 1.243-4.468; p=0.006). Time-dependent receiver operating characteristic (ROC) analysis indicated that the area under the ROC curve at 5 years was 0.66 both in the discovery and internal validation set, while the two external validation sets also suggested good performance of the 3-mRNA signature. Besides that, a nomogram was built and the calibration plots and decision curve analysis indicated the good performance and clinical utility of the nomogram. In conclusion, this 3-mRNA classifier proved to be a useful tool for prognostic evaluation and could facilitate personalized management of ccRCC patients.
引用
收藏
页码:10324 / 10335
页数:12
相关论文
共 39 条
[1]  
CHEN L, 2018, FRONT PHYSIOL, V9
[2]   Co-expression network analysis identified FCER1G in association with progression and prognosis in human clear cell renal cell carcinoma [J].
Chen, Liang ;
Yuan, Lushun ;
Wang, Yongzhi ;
Wang, Gang ;
Zhu, Yuan ;
Cao, Rui ;
Qian, Guofeng ;
Xie, Conghua ;
Liu, Xuefeng ;
Xiao, Yu ;
Wang, Xinghuan .
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2017, 13 (11) :1361-1372
[3]   Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes [J].
Cristescu, Razvan ;
Lee, Jeeyun ;
Nebozhyn, Michael ;
Kim, Kyoung-Mee ;
Ting, Jason C. ;
Wong, Swee Seong ;
Liu, Jiangang ;
Yue, Yong Gang ;
Wang, Jian ;
Yu, Kun ;
Ye, Xiang S. ;
Do, In-Gu ;
Liu, Shawn ;
Gong, Lara ;
Fu, Jake ;
Jin, Jason Gang ;
Choi, Min Gew ;
Sohn, Tae Sung ;
Lee, Joon Ho ;
Bae, Jae Moon ;
Kim, Seung Tae ;
Park, Se Hoon ;
Sohn, Insuk ;
Jung, Sin-Ho ;
Tan, Patrick ;
Chen, Ronghua ;
Hardwick, James ;
Kang, Won Ki ;
Ayers, Mark ;
Dai Hongyue ;
Reinhard, Christoph ;
Loboda, Andrey ;
Kim, Sung ;
Aggarwal, Amit .
NATURE MEDICINE, 2015, 21 (05) :449-U217
[4]   Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions [J].
De Sousa E Melo, Felipe ;
Wang, Xin ;
Jansen, Marnix ;
Fessler, Evelyn ;
Trinh, Anne ;
de Rooij, Laura P. M. H. ;
de Jong, Joan H. ;
de Boer, Onno J. ;
van Leersum, Ronald ;
Bijlsma, Maarten F. ;
Rodermond, Hans ;
van der Heijden, Maartje ;
van Noesel, Carel J. M. ;
Tuynman, Jurriaan B. ;
Dekker, Evelien ;
Markowetz, Florian ;
Medema, Jan Paul ;
Vermeulen, Louis .
NATURE MEDICINE, 2013, 19 (05) :614-618
[5]   affy -: analysis of Affymetrix GeneChip data at the probe level [J].
Gautier, L ;
Cope, L ;
Bolstad, BM ;
Irizarry, RA .
BIOINFORMATICS, 2004, 20 (03) :307-315
[6]   Converting a breast cancer microarray signature into a high-throughput diagnostic test [J].
Glas, Annuska M. ;
Floore, Arno ;
Delahaye, Leonie J. M. J. ;
Witteveen, Anke T. ;
Pover, Rob C. F. ;
Bakx, Niels ;
Lahti-Domenici, Jaana S. T. ;
Bruinsma, Tako J. ;
Warmoes, Marc O. ;
Bernards, Rene ;
Wessels, Lodewyk F. A. ;
Van 't Veer, Laura J. .
BMC GENOMICS, 2006, 7 (1)
[7]   L1 Penalized Estimation in the Cox Proportional Hazards Model [J].
Goeman, Jelle J. .
BIOMETRICAL JOURNAL, 2010, 52 (01) :70-84
[8]   Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data [J].
Gui, J ;
Li, HZ .
BIOINFORMATICS, 2005, 21 (13) :3001-3008
[9]   Forkhead Box M1 positively regulates UBE2C and protects glioma cells from autophagic death [J].
Guo, Liang ;
Ding, Zhiming ;
Huang, Nunu ;
Huang, Zhengsong ;
Zhang, Nu ;
Xia, Zhibo .
CELL CYCLE, 2017, 16 (18) :1705-1718
[10]   GSVA: gene set variation analysis for microarray and RNA-Seq data [J].
Haenzelmann, Sonja ;
Castelo, Robert ;
Guinney, Justin .
BMC BIOINFORMATICS, 2013, 14