Anharmonic propagation of two-dimensional beams carrying orbital angular momentum in a harmonic potential

被引:65
作者
Zhang, Yiqi [1 ,2 ]
Liu, Xing [1 ,2 ]
Belic, Milivoj R. [3 ]
Zhong, Weiping [4 ]
Wen, Feng [1 ,2 ]
Zhang, Yanpeng [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Minist Educ, Key Lab Phys Elect & Devices, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Shaanxi Key Lab Informat Photon Tech, Xian 710049, Peoples R China
[3] Texas A&M Univ Qatar, Sci Program, Doha, Qatar
[4] Shunde Polytech, Dept Elect & Informat Engn, Shunde 528300, Peoples R China
基金
中国国家自然科学基金;
关键词
NONLINEAR ACCELERATING BEAMS; LINEAR OPTICAL POTENTIALS; ENERGY AIRY BEAMS; GENERATION; TRANSFORMATION; INVERSION; SOLITONS; MEDIA;
D O I
10.1364/OL.40.003786
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analytically and numerically investigate an anharmonic propagation of two-dimensional beams in a harmonic potential. We pick noncentrosymmetric beams of common interest that carry orbital angular momentum. The examples studied include superposed Bessel-Gauss (BG), Laguerre-Gauss (LG), and circular Airy (CA) beams. For the BG beams, periodic inversion, phase transition, and rotation with periodic angular velocity are demonstrated during propagation. For the LG and CA beams, periodic inversion and variable rotation are still there but not the phase transition. On the whole, the "center of mass" and the orbital angular momentum of a beam exhibit harmonic motion, but the motion of the beam intensity distribution in detail is subject to external and internal torques and forces, causing it to be anharmonic. Our results are applicable to other superpositions of finite circularly asymmetric beams. (C) 2015 Optical Society of America
引用
收藏
页码:3786 / 3789
页数:4
相关论文
共 34 条
[21]   Observation of accelerating airy beams [J].
Siviloglou, G. A. ;
Broky, J. ;
Dogariu, A. ;
Christodoulides, D. N. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[22]   Accelerating finite energy Airy beams [J].
Siviloglou, Georgios A. ;
Christodoulides, Demetrios N. .
OPTICS LETTERS, 2007, 32 (08) :979-981
[23]   Perfect vortex beam: Fourier transformation of a Bessel beam [J].
Vaity, Pravin ;
Rusch, Leslie .
OPTICS LETTERS, 2015, 40 (04) :597-600
[24]   Generalized Radially Self-Accelerating Helicon Beams [J].
Vetter, Christian ;
Eichelkraut, Toni ;
Ornigotti, Marco ;
Szameit, Alexander .
PHYSICAL REVIEW LETTERS, 2014, 113 (18)
[25]   Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation [J].
Wang, Shaofei ;
Fan, Dengfeng ;
Bai, Xuekun ;
Zeng, Xianglong .
PHYSICAL REVIEW A, 2014, 89 (02)
[26]   Acceleration control of Airy beams with optically induced refractive-index gradient [J].
Ye, Zhuoyi ;
Liu, Sheng ;
Lou, Cibo ;
Zhang, Peng ;
Hu, Yi ;
Song, Daohong ;
Zhao, Jianlin ;
Chen, Zhigang .
OPTICS LETTERS, 2011, 36 (16) :3230-3232
[27]   Effect of initial frequency chirp on Airy pulse propagation in an optical fiber [J].
Zhang, Lifu ;
Liu, Kun ;
Zhong, Haizhe ;
Zhang, Jinggui ;
Li, Ying ;
Fan, Dianyuan .
OPTICS EXPRESS, 2015, 23 (03) :2566-2576
[28]   Trapping and guiding microparticles with morphing autofocusing Airy beams [J].
Zhang, Peng ;
Prakash, Jai ;
Zhang, Ze ;
Mills, Matthew S. ;
Efremidis, Nikolaos K. ;
Christodoulides, Demetrios N. ;
Chen, Zhigang .
OPTICS LETTERS, 2011, 36 (15) :2883-2885
[29]   Periodic inversion and phase transition of finite energy Airy beams in a medium with parabolic potential [J].
Zhang, Yiqi ;
Belic, Milivoj R. ;
Zhang, Lei ;
Zhong, Weiping ;
Zhu, Dayu ;
Wang, Ruimin ;
Zhang, Yanpeng .
OPTICS EXPRESS, 2015, 23 (08) :10467-10480
[30]   Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media [J].
Zhang, Yiqi ;
Belic, Milivoj R. ;
Zheng, Huaibin ;
Chen, Haixia ;
Li, Changbiao ;
Li, Yuanyuan ;
Zhang, Yanpeng .
OPTICS EXPRESS, 2014, 22 (06) :7160-7171