A posteriori error estimation for acoustic wave propagation problems

被引:24
作者
Oden, JT [1 ]
Prudhomme, S [1 ]
Demkowicz, L [1 ]
机构
[1] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
D O I
10.1007/BF02736190
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The main purpose of this paper is to review a posteriori error estimators for the simulation of acoustic wave propagation problems by computational methods. Residual-type (explicit and implicit) and recovery-type estimators are presented in detail in the case of the Helmholtz problem. Recent work on goal-oriented error estimation techniques with respect to so-called quantities of interest or output functionals are also accounted for. Fundamental results from a priori error estimation are presented and issues dealing with pollution error at large wave numbers are extensively discussed.
引用
收藏
页码:343 / 389
页数:47
相关论文
共 113 条
[1]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[2]   Discrete dispersion relation for hp-version finite element approximation at high wave number [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :553-575
[3]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[4]   Post-processing with computable error bounds for the finite element approximation of a nonlinear heat conduction problem [J].
Ainsworth, M ;
Kelly, DW ;
Sloan, IH ;
Wang, SL .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (04) :547-561
[5]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[6]  
[Anonymous], ANN SCUOLA NORM SUP
[7]  
[Anonymous], MAITRISE CALCUL MECA
[8]   A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution [J].
Babuska, I ;
Ihlenburg, F ;
Paik, ET ;
Sauter, SA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 128 (3-4) :325-359
[9]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[10]   THE POST-PROCESSING APPROACH IN THE FINITE-ELEMENT METHOD .2. THE CALCULATION OF STRESS INTENSITY FACTORS [J].
BABUSKA, I ;
MILLER, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1984, 20 (06) :1111-1129