A normality criterion involving rotations and dilations in the argument

被引:0
作者
Grahl, Juergen [1 ]
机构
[1] Univ Wurzburg, Dept Math, DE-97074 Wurzburg, Germany
来源
ARKIV FOR MATEMATIK | 2012年 / 50卷 / 01期
关键词
FAMILIES;
D O I
10.1007/s11512-011-0144-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a family F of analytic functions in the unit disk D all of whose zeros have multiplicity at least k and which satisfy a condition of the form f(n)(z)f((k))(xz) not equal 1 for all z is an element of D and f is an element of F (where n >= 3, k >= 1 and 0<|x|<= 1) is normal at the origin. The proof relies on a modification of Nevanlinna theory in combination with the Zalcman-Pang rescaling method. Furthermore we prove the corresponding Picard-type theorem for entire functions and some generalizations.
引用
收藏
页码:89 / 110
页数:22
相关论文
共 19 条
[1]  
Bergweiler W, 1995, REV MAT IBEROAM, V11, P355
[2]  
CARTAN H, 1928, ANN ECOLE NORMALE, V45, P255, DOI DOI 10.24033/ASENS.786
[3]  
CHEN HH, 1995, SCI CHINA SER A, V38, P789
[4]  
CLUNIE J, 1967, J LONDON MATH SOC, V42, P389
[5]   EXCEPTIONAL VALUES OF DIFFERENTIAL POLYNOMIALS [J].
DOERINGER, W .
PACIFIC JOURNAL OF MATHEMATICS, 1982, 98 (01) :55-62
[6]   NORMAL FAMILIES AND NEVANLINNA THEORY [J].
DRASIN, D .
ACTA MATHEMATICA UPPSALA, 1969, 122 (3-4) :231-&
[7]  
GRAHL J., 2002, COMPUT METHODS FUNCT, V2, P113
[8]   A Modification of the Nevanlinna Theory [J].
Grahl, Juergen .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2010, 10 (01) :97-109
[9]   Differential polynomials with dilations in the argument and normal families [J].
Grahl, Juergen .
MONATSHEFTE FUR MATHEMATIK, 2011, 162 (04) :429-452
[10]  
Hayman W. K., 1964, Meromorphic functions